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Abstract

We construct a solution functor within the context of a still hypothetical p-adic ana-
lytic Riemann-Hilbert correspondence. Our approach relies on the overconvergent de
Rham period sheaf IB%ZR, obtained from an ind-Banach completion of B;,; along the
kernel of Fontaine’s map. A key result in this thesis is establishing a f—BER—bimodule
structure on the period structure sheaf (’)IB%LR. Here, D denotes the sheaf of infinite
order differential operators introduced by Ardakov-Wadsley; notably, the analogous
statement does not hold for Scholze’s OB4r. We explain how this leads to a solution
functor for D-modules and propose conjectures about its compatibility with Scholze’s

horizontal sections functor and the reconstruction of D-modules from their solutions.
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Chapter 1

Introduction

1.1 Background

1.1.1 History and Motivation

In his 1900 address at the International Congress of Mathematicians, David Hilbert
presented 23 problems that would significantly impact 20th-century mathematics.
Among these, he posed a question about the existence of complex differential equa-
tions with specific singular points and monodromy groups. Deligne, Kashiwara, and
Mebkhout later answered this question with the Riemann-Hilbert correspondence,
linking D-modules and perverse sheaves. This connection opened totally new per-
spectives in representation theory.

Fix a prime p. k denotes a non-Archimedean field of mixed characteristic (0, p).
In a series of papers including [48, 49, 50, 51|, Schneider and Teitelbaum developed
the theory of locally analytic representations of a k-analytic group G in locally con-
vex topological vector spaces over k. These kinds of representations arise naturally
in several places in number theory, for example in the p-adic local Langlands pro-
gram [25, 27, 29]. The author aims to study them with the ideas underpinning the
classical Riemann-Hilbert correspondence.

Schneider-Teitelbaum’s work inspired Ardakov-Wadsley [7, 6] and Ardakov-Bode-
Wadsley [5] to introduce the sheaf D of infinite order differential operators on a given
smooth rigid-analytic variety X over a non-Archimedean field £ in mixed charac-
teristic. There already have been strong applications to p-adic representation the-
ory, for example the Beilinson-Bernstein style localisation theorems [7, Theorem E]
and [2, Theorem C] as well as the construction of new classes of locally analytic
representations [3, Theorem C]. Therefore, we we aim to develop a Riemann-Hilbert

correspondence for D-modules.



Notation 1.1.1. k denotes a finite field of characteristic p, W (k) its ring of (always
p-typical) Witt vectors, and k is a finite extension of ko := W (k)[1/p]. Equip k with

the discrete valuation extending the one on k.
Notation 1.1.2. X is a fixed smooth rigid-analytic k-variety.

Remark 1.1.3. We omit functional analytic details in this introduction for the sake
of clarity. They are expanded upon in the main body of this thesis. References are

included along the way.

1.1.2 Prosmans-Schneiders’ approach to the Riemann-Hilbert
correspondence

The standard proof of the classical Riemann-Hilbert correspondence fails in the p-
adic setting, due to the current absence of a six-functor formalism for holonomic D-
modules, cf. [1, 17, 5, 18, 19, 32, 33]. Therefore we follow Prosmans-Schneiders’ [45]
approach in the Archimedean setting. View the structure sheaf O as a bimodule

object for the following two ring-objects: D and the constant sheaf kx. This gives

Sol: D(D)” = D (ky), M* — RHomz(M*,0), and
Rec: D (ky) — D (D), F* = RHom,, (F*,0).

There is a canonical functorial morphism M® — Rec (Sol (M?*)) for every complex
M?® of D-modules. We would like it to be an isomorphism for a large collection of
M?®, as this would imply that the restriction of Sol to a large full subcategory of
D (6) s fully faithful. Whilst Prosmans-Schneiders observed that this is indeed
the case in the Archimedean setting, Ardakov-Ben-Bassat [4] showed that it is not
in the non-Archimedean setting, at least not over our preferred ground field k. This

suggests that we consider another context for non-Archimedean geometry.

1.1.3 p-adic Hodge theory

We work within the setting of [54]: Replace the constant sheaf ky and the structure
sheaf O on X with the positive de Rham period sheaf Bz and the positive de Rham
period structure sheaf OIB%:{R on the pro-¢étale site X|,,06¢. Then use a local description

of the sections of OBZ;, cf. [55], to show that the augmented de Rham complex

V+
0— le_R — OIB%(—;R _ar OB(—:{’_R ®y—10V_IQI N OB(—:{’_R ®y710V_IQd — 0



is exact. Here v: X,,.¢s — X denotes the canonical projection of sites. This is the

main input for the construction [54, Theorem 7.6 of Scholze’s fully faithful functor

filtered O-modules with Bx-local systems, that is
integrable connection satisfying » < ¢ finite locally free sheaves 3, (1.1.1)
Griffiths transversality of Bz-modules,

which is the first instance of a p-adic de Rham functor.
In the complex analytic setting, the solution functor is closely related to the de
Rham functor. Therefore, we expect that Prosmans-Schneiders’ ideas can be realised

within this geometric context.

1.2 Main results

We need an appropriate variant of the ﬁ—kx—bimodule object O to apply Prosmans-
Schneiders’ ideas within the framework of p-adic Hodge theory. Following the work
of Scholze, OBX; seems to be the natural choice. But D is a sheaf of infinite order
differential operators and the Bjx-linear differential operators on OB}, are all of
finite order. Thus there is no sensible v~* D-module structure on OB};. Therefore,
we introduce variants of Bl and OBJ;: the positive overconvergent de Rham period
sheaf * ]B%ji’; and the positive overconvergent de Rham period structure sheaf OBE’;
The following local description of OB in the style of [54, Proposition 6.10] is the

main technical input for our constructions.

Theorem 1.2.1 (Theorem 3.5.5). Assume that X is affinoid and equipped with an
étale morphism X — T := Spk <T1i, s ,Tf>. Denote the induced pro-étale covering
introduced in the [54, proof of Corollary 4.7] by X — X. Then

, 20,0 g\ ,
im Bl | (2220 = omft

- Zi— 81 - 18 |17
m>0
s an isomorphism of sheaves of ]B%ji’;{ | -algebras.
OIB%E’TI is small enough to carry an action of v—* 13, in the following sense.

Theorem 1.2.2 (Theorem 4.2.1). There exists a v=! ﬁ-Bji’g-bz’module structure on

OIB%I]’;: such that the canonical morphism
v 0%y, Bl — OBlR

is a morphism of v—! 5—BL’§-bim0dule objects. It is unique.

LA similar construction appeared in [41, Definition 5.1.1]. It would be interesting to establish a
precise comparison and study applications of methods developed loc. cit. to the theory of D-modules.



(’)IBSL’Q is large enough to behave like OBy, in the following sense.

Theorem 1.2.3 (Theorem 4.3.8). The v~ 5—Bg§—bimodule structure on OB in-

duces a Bg’g-lmear connection
Vit OBl — OBl ®,10r7 10
It 1s integrable, and the associated augmented de Rham complex is strictly exact:
VT’+ —~ ~ .

0— Bl — 0BT % OBIT ®, 1007 1Q! = -+ — OBlT @, 100 1QY 0.
Remark 1.2.4. Assume that X is affinoid and equipped with an étale morphism X —
T? = Spk <T1i, e ,Tdi>. The vector fields d/dT; lift canonically along the étale map
O (T?) — O (X) to elements 9; € ﬁ(X) By Theorem 1.2.1, OBJ;i has the sections
Z1,...,24q, locally on the proétale site.

d
&Z]

=z, %) = %

then determines the action of v~ D on (’)IB%Z’PT , where 9;; is the Kronecker delta.

1.3 Conjectures

We define the positive solution functor via the v—* D-bimodule structure on OIB%L’}_{:

A~

Sol*: D(D)” - D (Bl ) . M* — RHom, . 5 (v M*, OBl ) .
Following the classical [35, Proposition 4.2.1], the positive de Rham functor is
dR*: D (D) — D (Bl ), M* > Sol* (D (M®)) [dim X].

Here, D is the D-module duality functor, cf. [18, section 5.2]. We expect these con-

structions to be compatible with Scholze’s functor (1.1.1), in the following sense.

Conjecture 1.3.1 (Conjecture 5.3.3). Consider an O-module with integrable connec-
tion €. Equipped with the trivial filtration, Scholze’s functor (1.1.1) associates to it
a Bg-local system L. On the other hand, we view & as a D-module. Then dR* (€)

1s concentrated in degree —dim X and, functorially in &,

H™ % (dRT(€)) @i Bip — L.



We would like to reconstruct D-modules from their solutions, following Prosmans-
Schneiders’ aforementioned work [45]. This requires to pass from the pro-étale site
back to the analytic space X. Here one runs into problems: there is a canonical
morphism y: O — R, OIB%II’;{, but we cannot expect it to be an isomorphism, cf. [54,
Proposition 6.16(ii)]. The issue boils down to the non-vanishing of the first continuous
Galois cohomology of BJ;. As a solution, Fontaine [30] introduced B;’dR, the positive
almost de Rham period ring >. We conjecture the existence of an overconvergent
version Bng. A corresponding period structure sheaf OIBLdR should be a suitable

bimodule object, giving rise to a functor
) °P ® ° ,
Rec: D (Blf) =D (D), F* — Ru. R Homy,, (F*, OB ).

We then expect Rec to be a quasi-left-inverse of Sol, at least on a suitable full sub-

category of the derived category of D-modules. In particular, the canonical map
D — Rec (Sol (D)) = Ru. R Homy:. (OBl OB ) (1.3.1)

should be an isomorphism. This would explain how to reconstruct D from p-adic

Hodge theory, thereby justifying the title of this thesis.

1.4 Functional analysis

Ishimura [39] proved that an archimedean analog of (1.3.1) is an isomorphism, pro-
vided one takes track of the topologies on the sheaves. This result is a key input
for Prosmans-Schneiders’ [45]. Consequently, both loc. cit. and this thesis have to
operate within a framework that accommodates homological algebra whilst account-
ing for the topologies involved. Following Prosmans-Schneiders’ article, we work with
ind-objects in the category of k-Banach spaces.

Condensed mathematics [56] offers an alternative approach. It relates to the
formalism used in this thesis as follows: The [23, (proof of) Lemma A.15, Proposition
A.25], and [40, Proposition 6.1.9] provide a strongly monoidal cocontinuous exact

functor into the category of solid k-vector spaces

IndBan, — Vec;*.

It translates the results of this thesis into the formalism of Vec;*"-valued sheaves.

2The acronym pdR comes from the french presque de Rham.



1.5 Summary of the thesis

Chapter 2 concerns foundational notions from functional analysis. We introduce var-
ious period sheaves and period structure sheaves in chapter 3 and compute their
sections explicitly. D enters the picture in chapter 4, where we construct the bimod-
ule structure on the overconvergent de Rham period structure sheaf and prove the

Poincaré Lemma. In chapter 5, we study the positive solution and de Rham functors.

1.6 Conventions and notation

= denotes an equality, = denotes an isomorphism, and ~ denotes an equivalence.
When an equality, isomorphism, or equivalence follows from a specific result, the

reference is written above the symbol denoting the equality, isomorphism, or equiv-
2.5.10

Y

alence. For example, X = Y means: Lemma 2.5.10 implies that X and Y are
isomorphic.

Let F: C — D be an additive functor between two additive categories. It ex-
tends to a functor between the associated categories of chain complexes and cochain
complexes. Abusing notation, we denote it again by F.

Given a symmetric monoidal category containing a monoid object S, Mod(S5)
denotes the category of S-module objects. It is again symmetric monoidal if S is
commutative, cf. [18, section 2.2]. Throughout this article, the term module always
means left module, unless explicitly stated otherwise.

The natural numbers are N = {0,1,2,3,...}. For any natural number n, write
Ns,:={n,n+1Ln+2n+3...}.

All filtrations are descending.

Fix a prime number p throughout this article.

All Huber pairs (A, A™) are complete, that is both A and A" are complete as

topological rings.



Chapter 2

Functional analysis

We assume that the reader is comfortable with Schneiders’ formalism of quasi-abelian
categories, see [52]. Some of our cited sources operate within the Archimedean setting;

nonetheless, the proofs remain applicable in the non-Archimedean context.

2.1 Seminormed, normed, and Banach modules

We follow [13, Chapter 5].

Rings and modules

Definition 2.1.1. A (non-Archimedean) seminormed ring is a unitial commutative

ring R equipped with a map |- |: R — R3¢ such that
e |0] =0,
o |r + s| < max{|r|,|s|} for all r,s € R, and
e there is a C' > 0 such that |rs| < C|r||s| for all r,s € R.

Ris a (non-Archimedean) normed ring if the following implication holds for all r € R:
|r| = 0 implies » = 0. A normed ring is a (non-Archimedean) Banach ring if it is a

complete metric space with respect to the metric (r, s) — |r — s|.
The following construction supplies examples of seminormed rings.

Definition 2.1.2. R denotes an abstract commutative ring and I C R an ideal.
Define the I-adic seminorm on R (with base p): Set |r| := p~" for every r € R, where
v € NU{oo} is maximal with respect to the property that r € . Here [* := ﬂ;’io I

and p~> := 0. This turns R into a seminormed ring. It is a normed ring when R is



separated with respect to the I-adic topology. R is a Banach ring if it is separated
and complete with respect to the I-adic topology.

For any s € R, the s-adic seminorm is the (s)-adic seminorm.

Lemma 2.1.3. Consider a map ¢: R — S between two Banach rings that is a

morphism of abstract rings, R carries an I-adic norm and S carries a J-adic norm,

and ¢(I) C J. Then |p(r)| < |r| for all T € R.

Proof. Fix the notation from Definition 2.1.2. Consider r € R with |r| = p~*. Then
r € 1, and ¢(I) C J implies ¢(r) € JU. That is [¢(r)| < p~™¥ = |r|. O

Definition 2.1.4. Fix a seminormed ring R. A (non-Archimedean) seminormed R-

module is an R-module M equipped with a map || - ||: M — Rs( such that
o ||m + n|| < max{||m||, ||n||} for all m,n € M and
e there is a C' > 0 such that ||rm|| < C|r|||m|| for all r € R, m € M.

M is a (non-Archimedean) normed R-module if the following implication holds for all
m € M: |m| =0 implies m = 0. A normed R-module is a (non-Archimedean) Banach

R-module if it is a complete metric space with respect to the metric (m,n) — |m—n].

Categories
Fix a seminormed ring R. We define the categories

Banyp C Nrmpz € SNrmp (2.1.1)

of seminormed R-modules, normed R-modules, and R-Banach modules. The mor-

phisms are the R-linear maps ¢: M — N which are bounded, that is
[o(m)[| < C|lm||
for a constant C' = C(¢) > 0 and every m € M.

Proposition 2.1.5. The categories Bang, Nrmpg, and SNrmpg are quasi-abelian.

They admit enough functorial projectives.
Proof. See [13, Propositions 5.1.5 and 5.1.10]. n

We the cite the following two Lemma from [9, Proposition 3.14]. Loc. cit. assumes

that R is a Banach ring, but the arguments apply as well for seminormed rings.



Lemma 2.1.6. Let f: M — N be a morphism of R-Banach modules. Then
(i) ker(f) = f~1(0) with the restriction of the norm on M,
(ii) coker(f) = N/f(M) with the residue norm,
(i) im(f) = f(N) with the restriction of the norm on N, and
(iv) coim(f) = M/ ker(f) with the residue norm.
Lemma 2.1.7. Let f: M — N be a morphism of R-Banach modules.
(i) It is a monomorphism if and only if it is injective.

(ii) It is an epimorphism if and only if f(M) C N is dense.

(1i) It is a strict monomorphism if and only if it is injective, the norm on M is

equivalent to the norm induced by N, and f(M) is a closed subset of N.

() It is a strict epimorphism if and only if it is surjective and the residue norm on
M/ ker(f) is equivalent to the norm on N.

The inclusions (2.1.1) admit left adjoints: the separation and completion functors.
Definition 2.1.8.

(i) The separation functor SNrmp — Nrmp is M — M := M/{0}, equipped
with the quotient norm. That is, the norm of an element n € M*® is inf,, ||m||,

where the infinum runs over all preimages m € M of n.

(ii) The completion functor Nrmg — Bang sends a seminormed R-module N to

its completion N ; see for example [22, section 1.1.7, the proof of Proposition 5].

(iii) The separated completion functor SNrmpr — Bang is the composition of the
completion functor and the separation functor. Abusing notation, we denote it
by M +— M = Msep,

Lemma 2.1.9. The separated completion functoris exact.

Proof. See [13, Remark 5.1.7] O



Closed symmetric monoidal structures

R continuous to denote a seminormed ring. Given seminormed R-modules M and N,

equip M ®r N with the seminorm

n
Jeo|| = int {m Il @ = > ms @ n}

i=1

for all x € M ®pr N. This defines a bifunctor
SNrmp x SNrmg — SNrmg, (M, N) — M ®r N.
The separated tensor product is
Nrmp x Nrmp — Nrmg, (M, N) — M Q%" N := (M @ N)*P,

and the completed tensor product is

Bang x Bang — Bang, (M, N) — M®gzN = (M ®g N).

Lemma 2.1.10. (SNrmg, R, ®g), (Nrmpg, R, ®%"), and (BanR,R, @R) are closed

symmetric monoidal categories.

Proof. See the discussion in [13, subsubsection 5.1.1.2], especially loc. cit. Corollary
5.1.15. 0

Definition 2.1.11. For any two seminormed R-modules M and N, define the inter-
nal homomorphisms Homp (M, N) to be the seminormed R-module of all R-linear

bounded functions ¢: M — N, together with the seminorm

lofl = sup 1202
menr  [|m]
[[ml|#0

Lemma 2.1.12. Fiz M € SNrmpg, Nrmpg, or Bang. Then the assignment N +—
Homp (M, N) defines a right adjoint of the functors — @r M, — Q%" M, or —®rM,

respectively.
Proof. See the [13, remark following Corollary 5.1.15]. O

Notation 2.1.13. An R-Banach algebra S is a possibly non-commutative monoid ob-
ject in Bang. An S-Banach module is a left S-module object. Bang := Mod (95) is

the category of S-Banach modules, cf. subsection 1.6.

10



2.2 Ind-Banach modules

Fix a Banach ring R. Banpg is neither complete nor cocomplete. Therefore, we

consider its ind-completion, cf. [40, chapter 6]. Note that ®p extends to a bifunctor

®g: Ind (Bang) x Ind (Bang) — Ind (Banp)

<L¢l'ii>n77‘/;> @R (é(m??m) = 4(@77%@RW]’.

i€l jeJ i€l
jeJ

Lemma 2.2.1. (Ind (BanR),R,@R) is a closed symmetric monoidal elementary
quasi-abelian category. It has enough flat projectives stable under the monoidal struc-

ture @p. Furthermore, it has all limits and colimits.

Proof. The first sentence follows from Lemma 2.1.10 and [52, Proposition 2.1.19]. The
second sentence follows again from [52, Proposition 2.1.19], which applies by the [13,
Propositions 5.1.16 and 5.1.17]. The last sentence follows from [40, Proposition 6.1.18]
because Banpg has finite limits, ¢f. Lemma 2.1.10 and [59, Tag 0020]. O

Corollary 2.2.2. Filtered colimits in Ind (Bang) are strongly ezact.
Proof. This follows from Lemma 2.2.1, by [52, Proposition 2.1.16]. O

Notation 2.2.3. An R-ind-Banach algebra S ! is a possibly non-commutative monoid
object in Ind (Bang). An S-ind-Banach module is a left S-module object. IndBang :=
Mod (5) is the category of S-ind-Banach modules, cf. subsection 1.6. In particular,
IndBang = Ind (Bang) is the category of R-ind-Banach modules.

Lemma 2.2.4. Fiz a category C and consider the canonical functor C — Ind (C).
It commutes with finite colimits. If C has all finite limits, then Ind (C) has all finite

limits as well and the canonical functor commutes with those.
Proof. This is [40, Corollary 6.1.6 and 6.1.17]. O

Lemma 2.2.5. Let E be a quasi-abelian category and f: M — N a morphism in
Ind(E). Then f is P if and only if f = “lim. "f; where each f; is P. Here,

P € {mono, epi, strict, strict mono, strict epi} .

Proof. This is [9, Proposition 2.10]. Its proof implicitly uses Lemma 2.2.4. ]

"'We decide against the usage of the term ind-R-Banach algebra. If spoken out loud, it might be
misunderstood as an ind-(R-Banach algebra).

11
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Corollary 2.2.6. Let F' denote a field, complete with respect to a non-trivial non-
Archimedean valuation. Then, for any F-ind-Banach module V, —®pV: IndBany —

IndBany is exact.

Proof. Applying Lemma 2.2.4 and 2.2.5, we may assume that V' is a k-Banach module.
Thus the Corollary follows from [10, Theorem 3.50]. O

Finally, we consider the functor M + |M| that sends an R-Banach module to its

underlying abstract R-module. It extends to a functor

IndBany — Mod(|R|), “lim " M; — lim | M| (2.2.1)

)

Lemma 2.2.7. The functor (2.2.1) commutes with finite limits.

Proof. Filtered colimits commute with finite limits by Corollary 2.2.2, thus it suffices
to show that the functor Bang — Mod(R), M — |M| commutes with finite limits.
In fact, it suffices to compute that it commutes with finite products and equalisers,
which is clear. O
Fix a field F', complete with respect to a non-trivial non-Archimedean valuation.
Notation 2.2.8. An F-Banach space is an F-Banach module.
Definition 2.2.9. An F-ind-Banach space is bornological if it is isomorphic to an
object “lii>n”iEi where all the structural maps E; — E; are injective. A complete

bornological F-vector space is a bornological F-ind-Banach space. CBornyp denotes

the full subcategory of IndBang of complete bornological F-vector spaces.

Notation 2.2.10. Consider a diagram ¢ — E; of complete bornological F-vector spaces.

Denote its limit in CBornp, if it exists, by lglf’ E;. l&nz FE; is its limit in IndBanp.

Lemma 2.2.11. Giwen a diagram i — E; of complete bornological F'-vector spaces,

lim® E; ezists and coincides with lim_ E;.

1 1

Proof. This follows from [9, Remark 3.44 and Proposition 3.60]. O

Lemma 2.2.12. The functor CBorngp — IndBany is exact.

Proof. By Corollary [52, Corollary 1.2.28], it suffices to check that the induced functor
LH (CBorny) — LH (IndBanp)

between the left hearts is exact, cf. loc. cit. Definition 1.2.18. The result fol-
lows from [46, Proposition 5.16(b)]. We remark that this reference operates in the

archimedean context, but the proof goes through in our setting as well. O]
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. . . . . —~b .
CBornp carries a symmetric monoidal operation which we denote by ®. In this

thesis, we do not need its precise [9, Definition 3.57] but only the following result.

Lemma 2.2.13. Consider two complete bornological F-vector spaces V' and W', which

are inverse limits of Banach spaces. Then there is a functorial isomorphism
VERW S VEW
of F-ind-Banach spaces.

Proof. Both V' and W are proper as bornological spaces, cf. [9, Definition 3.62].
This follows from [10, Proposition 3.11], together with the fact that Banach spaces
are proper, which follows directly from the definition. Lemma 2.2.13 thus follows
from [9, Proposition 3.64]. O

Lemma 2.2.14. —®p liﬂlrF@r’”Q, ...,7¢) : IndBanyp — IndBanp is strongly

exact, given formal variables (1, ..., (4.

Proof. 1t preserves cokernels because the monoidal category IndBan,, is closed. To
show that it preserves kernels of arbitrary maps, apply [9, Remark 2.3] and Corol-
lary 2.2.2; thus it suffices to check that it preserves kernels of maps between k-Banach

spaces. Given a k-Banach space V', we compute with the Lemma 2.2.11 and 2.2.13:

= 1 r r ~ 1,5b . r r
V®F@F<ﬂ- Clu'-'77r Cd> :V®Flﬂle<ﬂ- Cl?"'aﬂ- <d>

7 T

As CBorny < IndBanpy preserves kernels, [18, Corollary 3.51] gives the result. [

2.3 Localisations

Fix a seminormed ring R and an element r € R.

Notation 2.3.1. Given a seminormed R-module M, equip M|[1/r] with the seminorm

|n|| := inf ||m]|/|r|. The infinum varies along expressions n = m/r’ with m € M.

Lemma 2.3.2. M ®p R[1/r] — M[1/r] as seminormed R[1/r]-modules for any R-
Banach module M.

Proof. Denote the canonical map M — M[1/r] by ¢. We aim to exploit Yoneda’s

Lemma to show that it is an isomorphism: We claim

Hompy ) (M[1/7],V) — Homp (M, V), f— fo¢

13



is a bijection for every seminormed R[1/r]-module V. This is clear when we consider
the Hom in the category of abstract modules. It remains to check that the Hom also
coincide when they only capture the bounded linear maps. That is, we have to check
the following for every R[1/r]|-linear map f: M[1/r] — V: f is bounded if and only
if f o ¢ is bounded.

The implication = follows because ¢ is bounded. To prove the converse, fix n €
M][1/r] and a presentation n = m/r*. C' > 0 is a bound on the scalar multiplication
R[1/r] x V' — V. Then

£l =122 < 12 o s)m)ll < i o

rt

[l

7]
Taking the infinum over all such expressions n = m/r’, we find || f]| < C[1]||foo||. O

Lemma 2.3.3. —®zR[1/r]: SNrmgr — SNrmpg preserves kernels of maps ¢: M —

N when N is r-torsion free.

Proof. There is a canonical linear map 7: (ker ¢) [1/r] — ker (¢[1/r]), which is bijec-
tive. It remains to check that the seminorms on both sides coincide. Recall that for
every x € (ker¢) [1/7],

[l = inf
x=m/r"
meker ¢

|7(z)] = inf [ually
x=m/r’ |7”1|
meM

We may therefore compare the infinums’ indexing sets

Sker ¢ 1= {(m,ri) cx=m/r" and m € kergb},
Sy = {(m,r") :x=m/r' and m € M} .

We have to check that both sets coincide. The inclusion Ske;¢ C Sy is clear. Consider
(m,r%) € Sy to prove 2. Now pick some <n~1, 7";) € Skerg- The equality m/r* = z =
m/r' implies m/1 € ker (¢[1/r]). That is ¢(m)/1 = 0, thus ¢(m) € N is killed
by some power of r. Because N is r-torsion free, this implies ¢(m) = 0. We find

(m, r") € Skerg, as desired. O

Lemma 2.3.4. The canonical morphism M Q@r N =, J\/Z@RJ/V\ 15 an isomorphism

for any two normed R-modules M and N.

Proof. This follows from the adjunctions. m

14



Corollary 2.3.5. Consider a strictly exact complex M’ AN VN V of R-Banach

modules. If M" is r-torsion free, then

o —

MBRR[L/r] 22 M@ RR[ /] "2 MG R R /7] (2.3.1)

—

is a strictly exzact complex of R[1/r]-Banach modules.

Proof. By assumption, ¢’ is strict and the canonical morphism ¢: im ¢’ — ker ¢ is an

isomorphism. We apply —@RR[l/r] to ¢
e Regarding its domain,

(im ¢") @ R[1/r] = ker (M — coker ¢') @ R[1/7]

2.3.3

=~ ker (M ®@r R[1/r] — coker (¢') @ R[1/7])

> ker (M @g R[1/r] — coker (¢/ @r idgp/m))

=im (¢ ®r idgp/m) -
The application of Lemma 2.3.3 requires that the canonical morphism M —
coker ¢’ is strict and coker ¢’ does not have r-torsion. The strictness is formal,
see [52, Remark 1.1.2(a)]. Regarding the torsion, consider [m] € coker¢’ =

M/ ker ¢ such that r[m] = 0. That is rm € ker¢. This implies r¢(m) =
¢(rm) = 0, thus ¢(m) = 0 because M" is r-torsion free. Therefore, [m] = 0.

e Regarding its codomain,
(ker ) ®p R[1/r] = ker (¢ ®g idgj )
by Lemma 2.3.3.

It follows that :® gid g1 /) coincides with the canonical morphism im (¢’ ®r idgp /T]) —

ker (qb ®r idgp /r]), which is thus an isomorphism. That is

¢®R ld

M' ®g R[1/r] "2 M g R[1/r] 223 M” @5 R[1/7]

is strictly exact. Now apply the separated completion functor; the Lemmata 2.3.4
and 2.1.9 imply that (2.3.2) is strictly exact. O

Let F be a field which is complete with respect to a non-trivial non-Archimedean
valuation. Fix a pseudo-uniformiser m € F, that is 0 < |7| < 1. The Banach ring of

power-bounded elements is F° = {x € F: |x| <1}. Consider R = F° and r = 7.

15



Lemma 2.3.6. Let M denote an F°-Banach module carrying the w-adic norm. As-
sume further that M has no m-torsion. Then M[1/7| is an F-Banach space, in
particular M@ po F — M[1/7].

Proof of Lemma 2.3.6. M is the unit ball of M[1/7] because it is 7w-torsion free. Any
given Cauchy sequence in M[1/7] is bounded, thus we can assume it lies in M. Since
M is complete, it follows that such a sequence converges in M, therefore it converges
in M[1/x]. This shows that M[1/x] is complete. Finally, apply Lemma 2.3.2. H

Corollary 2.3.7. Consider a strictly ezact complex M’ AN YNy Y of F°-Banach

modules. If M" is m-torsion free, then

MBpoF 28 VB o P 20 NS F (2.3.2)
1s a strictly exact complex of F-Banach spaces.
Proof. F°[1/p] = F by Lemma 2.3.6, thus Corollary 2.3.5 applies. ]

2.4 Banach and ind-Banach modules of power se-
ries

Fix a Banach ring R.

Notation 2.4.1. Let Q denote a possibly infinite set. N is the set of tuples a =

() eq € N¥ such that |af := )", a is finite. Write

=[]

weN

we

for a given set of formal variables {(,: w € Q} and all @ = (a,),,., € N¥.

Definition 2.4.2. Let M denote an R-Banach module and €2 a fixed set. An element
of the R-module M ((,: w € Q) is a formal expression

> omacre ] M¢,

aeN®) aEN(©)

such that the sets {a e N®:m, > e} are finite for all e > 0. We equip M ((,,: w € Q)

with the norm

1Y mall = sup [l

aeN®) aeN@Q
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Remark 2.4.3. When R = F' is a field, complete with respect to a non-trivial non-

Archimedean valuation, there is the canonical isomorphism

co (N9) =M (G weQ),
(6: N = F) s 3~ ()¢,

aeN®)
cf. [47, chapter 3]. We chose the notation M ((,: w € ) to emphasise that Defini-

tion 2.4.2 is a generalisaton of Tate algebras, in view of section 2.5.

Notation 2.4.4. Banél denotes the category whose objects are R-Banach modules

and whose morphisms are the R-linear maps which are bounded by 1.

Let {M;},.; denote a family of R-Banach modules. Their coproduct exists in
Banj;', cf. [13, subsubsection 5.1.1.1]. Denote it by [

o1 M;. Tt is the non-expanding
coproduct.

Lemma 2.4.5. Let M denote an R-Banach module and Q) a fized set. Then the

universal property of the non-expanding coproduct induces an isomorphism
<1 o
[T ME—MG:weq) (2.4.1)
aeN®)

of R-Banach modules.

Proof. [13, Subsubsection 5.1.1.1] explains that HaSéN(Q) M (¢ is the completion of the

direct sum €, ) M¢* equipped with the norm

| (MaC®) pen [ == sup [lmall-
aeN®)

On the other hand, M ({,: w € Q) is the completion of M [(,: w € Q], the subspace

of all finite sums @ mMaC® carrying the induced norm

1D ma®ll = sup fmall-

aeN(Q) QGN(Q)

The morphism (2.4.1) thus arises as the completion of the isomorphism

P M= MG weQ]

aeN(®)

of normed R-modules. O]
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Lemma 2.4.6. M is an R-Banach module and ) a fized set. Given any m :=
(Ma) gene © M with |[rme|| = |7||ma]| for allr € R and ||my|| < 1 for all o« € N,

aeN@) aEN©)

defines a morphism R ((,: w € Q) — M of R-Banach modules.

Proof. By Lemma 2.4.5, we can exploit the universal property of the non-expanding
coproduct. Thus we may check that the maps R — T, r — rm, are bounded by 1
for all & € N for all € R, ||rma]| < |7||lmall < |7| - 1. O

Lemma 2.4.5(i) implies that the operation M — M ((,: w € Q) defines a functor
Banp — Bang. By [40, Proposition 6.1.9], it extends canonically to a functor
IndBanyp — IndBang, which we denote again by My — M, ((,: w € Q). Loc. cit.

explains that this is not an abuse of notation, as the canonical morphisms

“lim” (M; (Go: w € Q) — My (ot 0 € Q)

iel
are isomorphisms for all M, = “lii)n”z-gM,- € IndBangp.

Lemma 2.4.7. Fiz an R-ind-Banach module M, = “lii>n ZierM; and a set Q. Then
M@rR (Cy: w € Q) — My {C: w € Q) (2.4.2)
the canonical morphism, is an isomorphism.

Proof. We may assume without loss of generality that M, = M is an R-Banach
module. The Lemma then follows from Lemma 2.4.5 and the [13, last sentence in the

proof of Proposition 5.1.16]. ]
Corollary 2.4.8. M, — M, ((,: w € Q) is strongly ezact for every set Q.

Proof. This follows from Lemma 2.4.7 and [13, Proposition 5.1.16]. O
Notation 2.4.9. B+ := (B + V) peq € N for 8 = (a) 07 = (V) peq € NE.
Lemma 2.4.10. Let S denote an R-Banach algebra and ) a fized set. Then

Z SlaCa ' Z SQaga = Z (Z 815827) Ca

aeNQ) a€eN(®) aeN®) \a=+y

makes S ((,: w € Q) an S-Banach algebra.

18



Proof. This is obvious. ]

Lemma 2.4.11. Consider a morphism ¢: S — T' of R-Banach algebras and a set 2.
Given any tuple t := (t,,) cq € T with ||[rt*|| = |r|||t*]| for all v € R and ||t*| < 1

for all t € N,
> saC = D d(sa)t”

aeN®) aeN®)
defines a morphism S ((,: w € Q) — T of R-Banach algebras.

Proof. See Lemma 2.4.6 for the construction of the morphism

R{Giwe) =T, Y 1ol Y rt°

aeN®) aeNE®)
of R-Banach modules. Apply Lemma 2.4.7 and [52, Proposition 1.5.2] to lift it to the
desired morphism. It is bounded, S-linear, and multiplicative by construction. O

Fix a pseudo-uniformiser = € R, that is 0 < |7| < 1.

Notation 2.4.12. Let M be an R-Banach module, €2 a fixed set, and ¢ € N. Define

M<%: w€Q> =M {(:weQ)(n,:weQ)/(min, —(:weQ),

an R-Banach module, where the 7, denote formal variables. We write (,/p? for the
images of the n, in M (&: w € Q).

If M = S is an R-Banach algebra, we view S <fr—“; w E Q> as an R-Banach algebra
where the multiplication is induced by Lemma 2.4.10.

Fix ¢ € N. The operation M +— M <7<T—“; w € Q> defines a functor Bany — Bang.
By [40, Proposition 6.1.9], it extends canonically to a functor IndBangy — IndBang,
which we denote again by M, — M, (%: w € Q). Loc. cit. explains that this is not
an abuse of notation, as the canonical morphisms
“%1” <MZ <%: w € Q>) =, M, <%: o e Q>

are isomorphisms for all M, = “li_n)l”z-e]Mi € IndBang.
Lemma 2.4.13. M, — M, <fr—‘;’ w E Q> is strongly exact for every q € N and set ).

Proof. Fix an R-Banach module M and consider the morphism
, Cw . Cw
M, we) = M(=:weQ) n — =—.
w4 T4
It is an isomorphism, as one directly constructs a two-sided inverse via the universal

property of the non-expanding coproduct, see Lemma 2.4.5. Lemma 2.4.13 thus
follows from Corollary 2.4.8. O
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Lemma 2.4.14. Let M denote an R-Banach module, ) a fizved set, and g € N. Then

M(Cw:w€Q>—>M<<w :w€Q>

7TQ+1

lifts canonically to a morphism of R-Banach modules as follows:
M2 wea) - (Suen)
w4 4 q+1 -
If M =S is an R-Banach algebra, this defines a morphism of R-Banach algebras.

Proof. Exploit the universal property of the non-expanding coproduct, c¢f. Lemma 2.4.5,

to write down the morphism

M(Cw:w€Q><77w:w€Q>—>M<7T§il:weﬂ>,

given by 7%+ wlol (¢, /79 for all @ € N, It factors through

M(Cw:weQ)(nw:w€Q>/(7Tq77w—Cw:wEQ)—>M< o :w€Q>.

7TCI+1

Complete to get the desired map. The last sentence of Lemma 2.4.14 is clear. O]
Lemma 2.4.14 furnishes a commutative diagram of R-Banach modules:

M (G w€e Q) — M <C“ w € Q> <<“ w € Q> . (2.4.3)

T w2’
Definition 2.4.15. Let M denote an R-Banach module and € a fixed set. We denote
the formal colimit of the diagram (2.4.3) by
M (S wen) m omat (2w,

qeN
This is, by definition, an R-ind-Banach module. If M = S is an R-Banach algebra,
we view S <7%fo w e Q> as an R-ind-Banach algebra.

Following previous discussion, M +— M <7%o w € Q> extends to a functor
IndBanp — IndBang, “ hm " M; — hmM < Co . w e Q> .
el el e
which we denote by M, — M, < fwE Q> Loc. cit. explains that this is not an

abuse of notation, as the canonical morphisms

“lim” (M; (Go: w € Q) — My (Co: 0 € Q)
iel
are isomorphisms for all M, = “ lim "ierM; € IndBang.

Lemma 2.4.16. M, — M, < fwE Q> is strongly exact for every set €.

Proof. By Lemma 2.2.5, it suffices to check the lemma for the restriction of the functor

to Bang. Now the result follows from Lemma 2.4.13 and Corollary 2.2.2. O
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2.5 Banach and ind-Banach completions

We continue to fix a Banach ring R, together with a pseudo-uniformiser = € R.
Recall Notation 2.4.12.

Definition 2.5.1. Fix a commutative R-Banach algebra S and a subset ¥ C S. Set

S<%> 2:S<%ZUEE>/<0‘—W(I%IUGZ>,

for all ¢ € N. This is, by definition, an R-Banach algebra. We write o/p? for the
images of the (,/n% in S <%>

Notation 2.5.2. When ¥ = {s1,..., 5S4} is finite, abbreviate

S<51,...,sd> L S<§>
4 o wa/
Remark 2.5.3. The ideal (0 — pq%: o€ Z) in Definition 2.5.1 is not closed in general,

see for example [11, Proposition 5.7].

Lemma 2.5.4. For a commutative R-Banach algebra S, a subset ¥ C S, and g € N,
5q:S<g—w:w€Q>—>S< o :w€Q>

74 e+l

denotes the map constructed by Lemma 2.4.14. It factors through a morphism

() =5 ()

of R-Banach algebras.

Proof. The computations

01 (0 - WqC—U) =0 — 7rq+1—cg

7'['Q+1

for all o € ¥ imply

5‘1((0—#’%:062)) - (O’—ﬂ'q—Hi'O‘GZ).

T 7TQ+1 ’

The 07 are bounded, thus the statement for the closures of the ideals follows. n

Lemma 2.5.4 gives a commutative diagram

S(Z>—>S<§>—>S<§>—> (2.5.1)

i 2
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Definition 2.5.5. Let S denote a commutative R-Banach algebra and ¥ C S a fixed
subset. We denote the formal colimit of the diagram (2.4.3) by

(2) s (3)
s 2eN s

This is, by definition, an R-ind-Banach algebra.

Notation 2.5.6. When ¥ = {s1,...,54} C S is finite, abbreviate

S<sl,...,sd> ::S<£>
e oo
Definition 2.5.7. An R-Banach module M is bounded if

sup [lm| < C
meM

for some constant C' = C'(M) > 0. In this case, M is bounded by C.

Example 2.5.8. R = F'is a field, complete with respect to a non-Archimedean non-
trivial valuation. S = F(T, L) is the Tate algebra in two variables and X is its ideal
generated by T'— L. Then the canonical morphism
T—-1L )Y
F(T, L) < > 2, F(T, L) <—>

™ ™

is not injective: T — L is a non-zero element of the domain, but it vanishes in

F(T, L) (¥/m). Indeed, for all i € N,
T = Ll = |7 (T = L) | < Grigr—pyl < 1.

This implies ||T"— L|| = 0, thus T'— L = 0.
We resolve this issue by considering R = F°, S = F°(T,L), and ¥ = (T — L)
instead. Then F° (T, L) is bounded by 1, thus Lemma 2.5.9 applies.

Lemma 2.5.9. Fiz two commutative R-Banach algebras S and T as well as a subset
Y. CS. We further assume that T is bounded by 1 and for all t;,to € T, |[tit2]| <
ltall|[t2]]. Also, m = w1 € T is not a zero-dwvisor. Then, for every q € N, there is
a bijection between the set of morphisms ¢: S (3/m9) — T of R-Banach algebras and
the set of morphisms of ¢: S — T of R-Banach algebras such that

(1) ¢ divides ¢p(o) € T for all o € ¥ and
(i1) ||p(a)|| < ||7?|| for all o € X. Here, || - || denotes the norm on T.
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The bijection is given by ¢ +— 1 := ¢|s.

Proof. Firstly, we show that the assignment ¢ — ¢|g defines the desired map. Indeed,
given a morphism ¢: S (¥ /7% — T of R-Banach algebras, we find that

(i) ¢(0) =79 (0/m?) € T. That is, 77 divides ¢(0).

(ii) Furthermore,

()l < [I7¢ (o/m) | < x|l (o /) || < [[x9[1 = [|=]].
This computation relies on the assumptions on 7.

Secondly, we check that ¢ — ¢|g is injective. Pick two maps ¢,¢': S <%> — T
which agree on S. It suffices to show that they agree on elements of the form o /77

where o € Y. But we compute
10 (2) = 6(0) = ¢/ (0) =0/ (=)
w4 w4
Since 7 € T is not a zero-divisor, we find ¢ (o/7?) = ¢/ (o/7?).
Thirdly, we prove that ¢ — ¢|g is surjective. That is, we have to extend a given
: S — T satisfying (i) and (ii) to a morphism S (¥/7%) — T of R-Banach algebras.
Extend v with Corollary 2.4.11 to a morphism
S<€—U: UEE> —>T,<—ZH 9lo)
T

4 4

of R-Banach algebras. It vanishes on the ideal generated by all the o — 79(, /7%, and

thus it vanishes on the closure. Therefore, the map above factors through a morphism

)y
¢: S <—> — T
w4
of R-Banach algebras. By construction, ¢|s = 1. O

Lemma 2.5.10. Consider a commutative R-Banach algebra S which is bounded by
1 and for all s1,s2 € S, ||s1s2|| < ||s1l||[s2ll- Fiz a subset ¥ C S. I := (%) is the ideal

generated by this subset. Then, for every q € N, the canonical morphism

S<%>iis<é> (2.5.2)

s an 1somorphism of S-Banach algebras. It is an isomorphisms of S-ind-Banach

algebras for ¢ = oco.
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Proof. Assume g < oo without loss of generality and construct the morphism

A N : ;
S<£:i€]>—>5<—>,£r—>i
i 4 i i
of S-Banach algebras with Lemma 2.4.11. It factors through the desired two-sided
inverse of (2.5.2). O

Proposition 2.5.11. Fiz a commutative ring S containing a finitely generated ideal
I, such that S is I-adically separated and complete. Equip S with the I-adic norm.
Let ¢ denote a formal variable. Then the topological algebra underlying the Banach
algebra S () carries the (I)-adic topology, where (I) C S (() is the ideal generated by
the image of I in S (().

Now fix an element s € S and a natural number q. Then the topological algebra un-
derlying the Banach algebra S (=) carries the (I)-adic topology, where (I) C S (s/77)
is the ideal generated by the image of I in S (s/m?).

We need the following two Lemmata in order to prove Proposition 2.5.11.

Lemma 2.5.12. Fix a surjective map ¢: A — B of abstract commutative rings,
together with an ideal J C A such that A is J-adically separated and complete. Equip
B with the quotient topology. Then B carries the ¢(J)-adic topology.

Proof. A subset U C B is open if its preimage ¢ 1 (U) C A is open. In this case,
there exists an n € N such that J* C ¢~ }(U), thus ¢(J)" = ¢ (J") C U.

It remains to show that for each n € N, ¢(J)" C B is open. Again, this is the
case once its preimage is open. But its preimage ¢! (¢(J)") is an ideal in A and it

contains J™. This implies that it is open. O

Lemma 2.5.13. Let S commutative R-Banach algebra, s € S, and ¢ € N. Then

SO [@C=5) 5 (5) (= (253)

4 4

s an isomorphism of S-Banach algebras.

Proof. One constructs the map (2.5.3) and its two-sided inverse via Lemma 2.4.11. [

Proof of Proposition 2.5.11. Fix a power series f = > - faC* € S((). We have, by
definition, ||f|| < p™" if and only if ||f,|| < p~" for all @« > 0. In order to prove the

first statement, we therefore have to show
[fall <p " foralla>0s fe (1) (2.5.4)
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The direction <« is clear. It remains to check =. Write J := [I" and fix a finite
generating set (zy,...,x,) = J. Define e, := supy, cse € for all a > 0. Note that
for all @ > 0, the assumption ||f,|| < p™" implies f € I" = J, which gives e, > 1.

Therefore, we can write, for all a > 0,

fa= Z fia®i
i=1

for certain f;, € J% 1. Also, f, — 0 for o — oo implies
eq — 00 for a — 0. (2.5.5)

Thus || fia|| < p~™Y — 0 for @ — oo, and the formal power series f; := 2@20 fiaC®
define elements of S(¢) for all i = 1,...,n. But then

= Zfa(a = Zmexz‘Ca = Z (Z fz'a(a> T; = mez' e (J)=()".
a>0 a>0 i=1 i=1 \a>0 i=1

This finishes the proof of = in (2.5.4), and we get the first half of Proposition 2.5.11.

2513
Apply Lemma 2.5.12to S (¢) — S(¢) /(wmi¢ —s) = S (s/m9) for the second half. [J

2.6 Categories of sheaves

Fix a Banach ring R and a site X.
We assume that the reader is comfortable with Schneiders’ formalism of sheaves

valued in quasi-abelian categories, cf. [52]. See also Appendix B.

Lemma 2.6.1. Suppose all coverings in X are finite. A Bang-presheaf on X is a
sheaf if and only if the following sequence is strictly exact for every open U € X and

every covering 4 of U:

0 FU) = [[FV)— [] FWxgW).

Ved W,W’eud

Proof. The implication = is clear. < follows because Bang has finite products. [

Lemma 2.6.2. Given a sheaf F: X — Bang, its composition with the canonical

functor Bang — IndBang, s a sheaf of R-ind-Banach modules.
Proof. Lemma 2.2.4 applies because Bang has finite limits. O

Recall the definition of the functor (2.2.1).
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Definition 2.6.3. Given a sheaf F of R-ind-Banach algebras on X, |F| is the sheafi-
fication of the presheaf U — |F(U)| of abstract | R|-modules.

Lemma 2.6.4. Given a sheaf F of R-ind-Banach algebras on X, the canonical map
|F(U)| — |FI(U) is an isomorphism of abstract |R|-modules if X has only finite

COVETINGS.
Proof. This follows from Lemma 2.2.7. ]

Notation 2.6.5. R is a monoid in the category of sheaves on X with values in a closed

symmetric monoidal quasi-abelian category E. M is an 'R-module object.

(i) R is a sheaf of S-Banach algebras if E = Bang, where S is an R-Banach
algebra. M is a sheaf of R-Banach modules.

(ii) R is a sheaf of S-ind-Banach algebras if E = IndBang, where S is an R-ind-
Banach algebra. M is a sheaf of R-ind-Banach modules.
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Chapter 3

Period sheaves

We introduce the overconvergent de Rham period sheaf and the overconvergent de

Rham period structure sheaf. Our constructions are inspired by [54, section 6].

3.1 Conventions and notation

Throughout, fix a prime number p and a perfect field x of characteristic p. Write
ko := W(k)[1/p], and let k denote a finite extension of ky. The absolute value on kg
extends to an absolute value on k cf. [21, Appendix A, Theorem 3]. Because kg is
discretely valued, k is discretely valued. Fix a uniformiser 7= € k. k° C k is the ring
of power-bounded elements. C'is the completion of a fixed algebraic closure of k.
This set-up allows any finite extension k of @, and in this case & is a finite field.
If x is an algebraic closure of IF,,, then we may choose k = ky, the maximal unramified

extension of Q.

3.2 The pro-étale site

We recall the pro-étale site associated to a smooth locally Noetherian adic space X
over Spa(k, k°) from [54]. Regarding the theory of adic spaces, we follow the notation
given in [57, Lecture 2 and 3|. See the [54, beginning of section 3| for the definition
of locally Noetherian.

Pro (Xg) is the pro-completion of the category X of adic spaces which are étale
over X. The underlying topological space of “lim”;e;U; € Pro(Xg) is lim,_, |Ui|,
where |U;| is the underlying topological space of U;. U € Pro (X) is pro-étale over
X if and only if it is isomorphic to an object h£1 "ierU; such that all transition maps

U; — U; are finite étale and surjective.
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The pro-étale site X, of X is the full subcategory of Pro (X ) consisting of
objects which are pro-étale over X. A collection of maps {f;: U; — U} in X 18
a covering if and only if the collection {|U;] — |U|} is a pointwise covering of the
topological space |U|, and a second set-theoretic condition is satisfied, see [55].

v: Xprost — Xet 1S the canonical projection of sites.

(i) Let U € Xpost- By [54, Lemma 4.2(iii)], lim._| v 0%, (U)/p" is p-adically
complete, thus it is m-adically complete. Equip it with the m-adic norm, cf.
Definition 2.1.2. This makes @jgl v 'Oy, (U)/p" a k°-Banach algebra. Tt is
thus a k°-ind-Banach algebra. The sheafification of

U s Ly 0%, (U) /)
j>1
is the completed integral structure sheaf (/’)\}proét. It is a sheaf of k°-ind-Banach

algebras because sheafification is strongly monoidal, c¢f. Lemma B.1.5.

(ii) Consider the presheaf of k-Banach algebras

\ - 236 ,

U (m v-lo;éxU)/pf) Bk = (@u-lo;éxlf)/w) 1/
Jjz1 Jj=z1

Sheafify it as a presheaf of k-ind-Banach algebras to get the completed structure

sheaf (/9\)( It is a sheaf of k-ind-Banach algebras by Lemma B.1.5.

proét *

Notation 3.2.1. We may write O+ = (5}pmét and O = Oy

Recall [54, Definition 4.3]. K is a perfectoid field of characteristic zero, cf. [53, Def-
inition 3.1], containing a ring of integral elements K+ C K, cf. [57, Definition 2.2.12].
The definition of the pro-étale site still makes sense for a given locally Noetherian
adic space Y over Spa (K, KT). U € Yyost s affinoid perfectoid if it is isomorphic to
“lim”¢;U; with U; = Spa(R;, R;") such that, denoting by R™ the p-adic completion of
lim_ Rf and R = R™[1/p], the pair (R, R") is a perfectoid affinoid (K, K*)-algebra,
cf. [53, Definition 5.1(i)].

Notation 3.2.2. With the notation from the previous paragraph, U:= Spa (R, R™).

Consider again X, the smooth locally Noetherian adic space over Spa (k, k°). U €
Xprost 1S affinoid perfectoid if the structural map U — X factors through a pro-étale
map Xy — X such that U € X6t/ Xx ~ Xk proet 1s affinoid perfectoid; see [54,
Proposition 3.15] for the canonical identification of the sites. Here, K denotes the

completion of an algebraic extension of k which is perfectoid. We further fix a ring of
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integral elements K™ C K containing k°. We consider the pair (K, KT) as an object
V = “lim”;;V; € Spa (k,k°) with V; = Spa(Kj;, K;") such that Kt is the r-adic

completion of h_n;iel K;r. The base change Xg := X (g g+) := X Xgpak,ko) V is then

proét

an object in X4

The following Lemma 3.2.3 appears implicitly in [54].
Lemma 3.2.3. The affinoid perfectoids form a basis for the site X,

Proof. Every finite field extension & C k' C C induces a finite étale map Sp k" — Sp k
between the associated rigid-analytic spaces. Thus it induces a finite étale map be-
tween the associated adic spaces Spa (k’, k’°) — Sp (k, k°), cf. [37, Proposition 1.7.11].
In particular, V' = “lim” .51 <c0 (K',k'°) € Spa(k, k;o)proét. Set C* = WO C
C'. C is perfectoid. By the [36, remark proceeding Proposition 3.9], C* C C'is a ring
of integral elements. By construction, X¢ := X(cc+) — X is a covering. Thus every
covering of X by affinoid perfectoids will give a covering of X by affinoid perfectoids.

Now apply [54, Corollary 4.7]. ]
Consider the full subcategory Xprost afiperta © Xprost 0f affinoid perfectoids.
Lemma 3.2.4. X, ¢t affperfa @5 closed under fibre products.

Proof. Fix a diagram U; — U, < Us of affinoid perfectoids in X, that lives over
a fixed perfectoid affinoid field (K, K1) of characteristic zero. Recall Notation 3.2.2.
The fibre product a X @ exists in the category of adic spaces and is again a
perfectoid space, see [53, Proposition 6.18]. On the other hand, U; X, Us is perfectoid
by [54, Lemma 4.6], and the universal property of the fibre product yields a map

Uy xu, Us — U; x5 Us. (3.2.1)

We claim that it is an isomorphism of adic spaces.

Write /U\l = Spa (Rl, Rf), @ = Spa (Rg, R;L), @ = Spa (Rg, R;j), and ax@ﬁg =
Spa(S, St). Here S = R;®g, Rs and ST is the completion of the integral closure of the
image of Ry DRy Rf in S. On the other hand, write the diagram U; — U, « Us above,
after suitable reindexing as explained in [44, page 54, remark 1.133], as an inverse
limit Uy; — Uy «— Us; of affinoids over a small cofiltered category I. Fix notation
U1 = Spa (R, Rf;), Uz = Spa (R, RY;), and Us; = Spa (Rs;, Rg;). Assume that all
these Huber pairs are complete. Then each Uy; Xy, Us; exists in the category of adic
spaces, see [37, Proposition 1.2.2], and U; Xy, Us = “liLH”iUu Xu,; Us;. Indeed, loc.
cit. says that Uy; Xy,, Us; = Spa(S;, S;7) where S; = Ry; ®pg,, Rs;, S is the integral

(2

29



closure of R}, ® R Ry, in S;, and both S; and S carry suitabale topologies. Now
write Sy = lim_ S; and ST = lim_ S:F. We turn S, into a Huber ring by declaring
ST to be a ring of definition, which we equip with the m-adic topology. This gives a

Huber pair (S, S%). To check this, we have to verify three conditions:
(i) St C S is by definition open.
(i) S C S follows from [57, Proposition 2.2.10.2].

(iii) It remains to show that SI is integrally closed in S,. To show this, consider
an element s € S, such that there exists a monic polynomial f = Z?:o filt €
STIL] with f(s) = 0. Pick indices [ and iy, ..., i, such that s € S; and f; €
S;; for all j = 0,...,n. Recall that the index category I was assumed to be
cofiltered. That is, I°P is filtered and thus we find an element t € I°P together
with morphisms from [ and i, . .., i, to t. In particular, s € S; and f € S;"[L].

Because S;” C S; is integrally closed, s € S;" follows, and therefore s € S,.

We observe that the map (3.2.1) above is given by Spa <(Soo, S;)) — Spa(S,ST). Tt

is an isomorphism by construction. O]
Definition 3.2.5. Fix U € Xp04.

1) Xprost afiperta/U is the full subcategory of X, .04 /U whose objects are the maps
proét,affp p
V' — U for affinoid perfectoid V. We equip it with the induced topology, and
Lemma 3.2.4 shows that it gives rise to a site.
i) Xfin U is the site whose underlying category is the category underlying
proét,affperfd

Xprost affiperta/ U, but we consider only the finite coverings.
— : 3 — 3 fin — fin
U= X7 write Xproet,affperfd = Xproet,affperfd/X and Xproét,affperfd T Xproét,affperfd/X‘

Lemma 3.2.6. Fiz a covering U — X in Xpn6. Then the morphisms of sites

fin
Xproét EE— Xproét,aﬁperfd Xp'roét,aﬁperfd

T T T

Xproét/U ? Xproét,aﬁ‘perfd/U ? X]jjg,ét’aﬁfperfd

JU
give rise to equivalences of categories

Sh (Xpmét? E) —— Sh (Xproét,aﬁperfd7 E) —— Sh (ngét,aﬁperfd’ E)

: : :

Sh (XPTOét/UJ E) —— Sh (Xpmét,aﬁperfd/U, E) —— Sh (ngjgét,aﬁperfd/U7 E)
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for any elementary quasi-abelian category E.

Proof. The vertical morphism at the left-hand side is an equivalence because U — X
is a covering. It remains to check that the horizontal arrows are equivalences. Since
the row at the top is obtained from the row at the bottom by setting U = X,
it suffices to check that the horizontal morphisms at the bottom are equivalences.
Lemma 3.2.3 gives the first equivalence Sh (Xpoet/U, E) ~ Sh (Xprost attperta/ U, E).
The second equivalence Sh (X ot afiperta/U, E) =~ Sh (Xgr‘})ét,aﬂperfd /U,E) follows from

Lemma B.2.1, which applies because all affinoid perfectoids are quasicompact objects
in Xproat, cf. [54, Proposition 3.12], ]

Finally, we give a local description of the structure sheaves.

Lemma 3.2.7. Assume that U € X4 is affinoid perfectoid with U= Spa(R, R").
Equip RT with the p-adic norm, giving R = R*[1/7| the structure of k-Banach alge-
bra. Then OF(U) = R* and O(U) = R.

Proof. Thanks to Lemma 3.2.6, we may view O* and O as sheaves on the site
XB ¢ affperta- BY [54, Lemma 4.10(iii)], it suffices to show that the presheaves U — R*
and U — R are sheaves.

Loc. cit. says that U — R is a sheaf of abstract k-algebras. The open mapping
theorem implies that it is a sheaf of k-Banach algebras, and it is a sheaf of k-ind-
Banach algebras by Lemma 2.6.2.

We know by [54, Lemma 4.10(iii)] that U — R is a sheaf of abstract k°-algebras.
U — R being a sheaf of k-Banach algebras implies that U — RT is a sheaf of
k°-Banach algebras. Another application of Lemma 2.6.2 finishes the proof. O]

3.3 The overconvergent de Rham period ring

This subsection follows the discussion at the beginning of [54, section 6]. Our new
contribution is the definition of the overconvergent de Rham period ring. Fix the
completion K of an algebraic extension of k which is perfectoid. Pick a ring of
integral elements K™ C K containing k° and recall tilting, cf. [53, Lemma 3.4]. Fix
an element p° € K’ such that (pb)ﬁ/p € (K)*. Let (R,R") denote an affinoid
perfectoid (K, K*)-algebra. Its tilt is (Rb, Rb+), cf. [53, Proposition 5.17 and Lemma
6.2].
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3.3.1 Integral period rings
Aig (R, BY) =W (RF),

is the relative infinitesimal period ring. Here the operator W refers to the (always
p-typical) Witt vectors. We equip Ay (R, RT) with the (p, [pb])—adic seminorm, cf.
Definition 2.1.2. That is, ||z|| := p~*, where v € N is maximal with respect to the
property that = € (p, [pb])v; |z|| == 0if z € (p, [pb])v for all v € N. When the
underlying perfectoid affinoid field is understood, write Aj¢ := Aje (K, KT).

Lemma 3.3.1. The underlying abstract ring of Ay (R, RT) is a strict p-ring.

Proof. R’ is a perfectoid K’-algebra, see the discussion in [53, section 5]. Loc. cit.

Proposition 5.9 gives that R** is a perfect F,-algebra and thus the lemma. ]

Since k is perfect, we get the isomorphism at the left of the composition

k2 limk = limk° /7 — lim Kt /7 = KT, (3.3.1)
s 3

Here, ® denotes the Frobenii. The isomorphism at the right-hand side comes from [53,

Lemma 3.4]. This composition (3.3.1) is a morphism of rings, thus it gives a map
W(li) — Ainf

between the associated rings of Witt vectors. We find that A, is a W(k)-algebra,
and so is Ay¢ (R, RT). Once we equip W (k) with the p-adic norm, Lemma 2.1.3
implies that they are both W (k)-Banach algebras.

On the other hand, k° is a W (k)-algebra and so is K. Lemma 2.1.3 implies that
K™ is a W(k)-Banach algebra, and so is RT. We may now follow the [26, proof of
Proposition 4.4.2] to find that Fontaine’s map

einf: Ainf (R, R+) - RJra

Z[an]pn = Z a?’l,pn‘

n>0 n>0

is a morphism of W (k)-algebras. We will see shortly, cf. Lemma 3.3.4, that 6, is a
morphism of W (k)-Banach algebras.

Lemma 3.3.2. There is an element & € Ay that generates ker O,y and is not a

zero-divisor in Ay (R, RT). It is of the form & = [pb] — ap for some unit a € Ayy.
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Proof. Everything is proven in [54, Lemma 6.3], except that a is a unit. Write £ =
(0,&1,&,...) as a Witt vector. Then & is a unit in K**, see [16, Remark 3.11]. That
is & = ano [ }L/pn} p", thus a = — ano [gi/ff“} p" is a unit modulo p. Because A;.¢

is p-adically complete, by Lemma 3.3.1, the result follows with [59, Tag 05GI]. ]
We remark that the definition of £ requires a choice, see [16, Remark 3.11].
Corollary 3.3.3. Ay (R, R") is a W(k)-Banach algebra.

We learned the following proof from [43].

Proof of Corollary 3.3.3. We have to check that Ay, (R, RT) is complete with respect
to the ( , [pb})—adic topology. But ( , [pb}) = (p, &), and £, p is a regular sequence: & is
not a zero-divisor, by Lemma 3.3.2, and p is not a zero-divisor in Ay, (R, RY) /¢ = R™.
Thus Lemma C.0.2 applies so that it suffices to check that A, (R, RT) is &-adically
and p-adically complete. Now see the [34, proof of Proposition 15.3.4]. m

Corollary 3.3.4. 0y is a strict epimorphism of W (k)-Banach algebras.

Proof. Surjectivity is clear. Lemma 3.3.2 implies (p, [pb}) = (p,&) = (p) + ker Oy
Everything follows now from the Lemmata 2.1.3 and 2.1.7. O

Lemma 3.3.5. Fiz an element f € Aye (R, R"). (i) If & divides fp then & divides
f. (it) If p divides f€ then p divides f.

Proof. Let & divide fp. We get 0 = Oy (fp) = Oine(f)p € RT. That is O (f) =
0, giving &|f and thus (i). To prove (ii), assume that p divides f¢. Consider
o: Aint(R,RT) — Aue(R,RY)/p = R**. Then 0 = o(f§) = o(f [p’]) = o(f)p’ €
R»*. Thus o(f) = 0, giving pl|f. O

Lemma 3.3.6. For every f € Aunc(R, R), (i) [f&] = [I£Ip~", (i) | fpll = || fllp~"

Proof. First, we prove (i). The estimate || f€]| < ||f|lp~! is clear. Recall the descrip-
tion (107 [pb}) = (p, &) from Lemma 3.3.2. To show >, assume that f € (p,&)", and v is
maximal with respect to this property. Then we have to show that v is maximal with
respect to the property f¢ € (p,£)""!. Suppose it is not, that is f€ € (p, &))" We
may write f€ = 012 fip'€UH2 7 for certain fy, . .., furo € Aigt (R, RY). Then f,,op?*?
is divisible by . Write f,40p™? = f1,,p""2¢ for some f] ., with Lemma 3.3.5(i) such
that f& = S_000 fipl€" 271 4+ f/ ,p"t2€. Since ¢ is not a zero-divisor, we find the
following contradiction:

v+1

F=)fp &+ flap € (p, &)

=0

33


https://stacks.math.columbia.edu/tag/05GI

The proof of (ii) is similar, but we apply Lemma 3.3.5(ii) and use that p is not a

zero-divisor, cf. Lemma 3.3.1. O
Recall Definition 2.5.1 and Notation 2.4.1.

Definition 3.3.7. For all ¢ € N, define the W (k)-Banach algebra

ker einf >

M) s 1) (2
For ¢ = oo, define the W (k)-ind-Banach algebra

ker Hinf

AR (B R o= A (R R) (S50} i A (R RY)

poo geN
Notation 3.3.8. Write Al (R, Rt) := A3 (R, R") = “lim” genAdg (R, RT).

We highlight that A, (R, RT) carries the (p, [ ]) adic topology, which is equiv-
alent to the (p,&)-adic topology by Lemma 3.3.2. For example, the power series
> a0 84 (¢/p?)" is an element of Ay (R, R) ((/p?)® with image

Zf € Al (R.R").

a>0

Lemma 3.3.9. The canonical morphisms

At (R, RY) <]%> = A% (R, RY)

are isomorphisms of Ay¢ (R, R*)-Banach algebras for every ¢ € N. It is an isomor-
phism of Ay (R, RT)-ind-Banach algebras for ¢ = oo

Proof. This follows from the Lemmata 2.5.10 and 3.3.2. O
Lemma 3.3.10. 6iy¢: Ajs (R, RT) — R factors through strict epimorphisms
Oan: Al (R, RT) — RT

of W(k)-Banach algebras for every g € N. Their kernels are principal ideals generated
by &/p?. We exhibit a strict epimorphism

0% - Agk (R, R*) — Rt
of W (k)-ind-Banach algebras by passing to the colimit along ¢ — oo.

Abusing notation, we refer to 0%, for ¢ € NU {oco} again as Fontaine’s maps.
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Notation 3.3.11. Write QQR = 03%-

Proof of Lemma 3.3.10. Fix q. Colimits preserve strict epimorphisms, cf. [14, Lemma
3.7], thus one may assume ¢ < oo. We get 03z from an application of the Lem-

mata 2.5.9 and 3.3.9. The proof of loc. cit. also gives a commutative diagram
Adr (R, RT)
T Oin (3.3.2)
At (R, R*) —205 R+,
where ¢ is the canonical map. Since 6, is a strict epimorphism, cf. Lemma 3.3.4,
[52, Proposition 1.1.8] implies that iy is a strict epimorphism.

Now compute the kernel. Let a := Y - aa (§/p?)" € kerf3y with coefficients
Ao € Aips (R, RT) for all @ > 0. Since 645 is bounded and ¢ (§) = 0,

0. (; (o (]%>Q> =0. (3.3.3)

Furthermore,
(3.3.5)

O (a0) =" O (¢ (ao))

Lemma 3.3.2 implies ag = ao for some ay € Ayye (R, RT). We find

a:a0+az>:1aa (é)a:]% <5opq+;aa (%)“‘j € (;%)

and ker 85, = (£/p?) follows. O

"2 1 (a) = 0.

Definition 3.3.12. Fix ¢ € N. Aj! (R, R") is the completion of Al (R, R"),
equipped with the (p, ker 83, )-adic seminorm, cf. Definition 2.1.2.

Remark 3.3.13. We think of AJ! (R, R") as the functions given on an open tubular
neighbourhood U around a vanishing locus {£ = 0}, where ¢ is a generator of ker 6.
Intuitively, this neighbourhood has radius |p|?, that is U = {z: log, (dist (2,€)) > ¢};
this explain the superscript > q.

Lemma 3.3.14. A7 (R, R*) is a W(k)-Banach algebra for all ¢ € N.

Proof. One has to check that the (p, ker 0% )-adic completion is complete. This follows
from [59, Tag 05GG], because ker 62 is a principal ideal by Lemma 3.3.10. ]
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Lemma 3.3.15. The A%, (R, R*) — A% (R, R*) factor canonically through the
maps Aly (R, RT) — A7 (R, RY). In particular, we get a canonical isomorphism

~

Ay (R, RY) — “lim "Aj{ (R, R")

qeN

of W (k)-ind-Banach algebras.

Proof. We have to check that every element in the image of (p, ker 0% ) in A% (R, RY)
is topologically nilpotent. By Lemma 3.3.10, it suffices to check this for p and £/p?.
This follows because p is already topologically nilpotent in Ay, (R, RT) and £/p? =

p-&/pttt € AL (R, RY). u

Remark 3.3.16. The rings Al (R, RT) are &/p-adically complete, in contrast to the
Al: (R, RY). This becomes useful in the proof of Theorem 3.4.2.

Lemma 3.3.17. The multiplication-by-(pi¢ — &)-map
Ainf (Ra R+) <C> - Ainf (R7 R+) <C>

is a strict monomorphism for every q € Nso. Thus the (p?¢ — &) C Aus (R, RT) (()
are closed and Ay (R, RT) = Ays (R, RT) (C) / (p7¢ — &).

Proof. We have to check that the morphism is injective, its image is closed, and it is
open onto its image, cf. Lemma 2.1.7(iii).

To show injectivity, note that

(P¢ =€) aa¢* =0

a>0

implies —ap = 0 and —ay& + pla,—1 = 0 for all @ > 1. By induction and because &
is not a zero-divisor, cf. Lemma 3.3.2, this gives a, = 0 for all «, thus injectivity.

Next, we show that the ideal (p?¢ —¢) C Ajye (R, RT) (() isclosed. If f =" . fn
is convergent in Ay (S,57)(¢) with f, € (p?¢ — &) for all n > 0, we can 7pick
gn € At (S, 8T) (¢) such that f, = g, (p?¢ — £). Because ¢ > 2, p~? < p~1. Thus

1922"Cll < Ngallp™ < llgullp™

On the other hand, Lemma 3.3.6 implies ||g.&|| = |lgn/lp™". This gives ||g.p%C| <
|gn&]|, therefore [21, section 2.1, Proposition 2| applies and we find

anH = ||gnqu - gng” = maX{HgnquHv Hgan} = Hgn“p_l-
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Since ( fn)nZO is a zero-sequence, this implies that g, — 0 for n — co. In particular,
F=(Tus0gn) 09C —€) € (¢ — €).

Regarding openness, this follows from the following fact, which we have already
proven above: ||g (p?¢ — &) || = ||g|lp~ @ for all g € Ay (R, RT) (¢). Indeed, this implies
that the ball of radius p~ in the image of the multiplication-by-(p?¢ — &)-map is

contained in the image of the pall of radius p~V*9. Finally,

. Ly 339 /€N 2518 N -
A% (R,RY) 2 Ay (R, RY) i) = A (R, RB")(Q) /(¢ =€)
implies the second sentence of Lemma 3.3.17. O

Lemma 3.3.18. £/p? € A%, (R, RT) is not a zero-divisor for all ¢ € Nx.

Proof. The identification Al (R, RT) = Ay (R, RY) (¢) / (p?¢ — &) from Lemma 3.3.17
implies that we have to check the following: Given f =) o fa(* € At (R, RT) (),

(fe@(-8=re@(-¢. (3.3.4)

We compute that (3.3.4) holds. Let g = - ga(® such that

nf=g®En—¢ =—Eg0+ > (1"9a-1— £ga) ("
a>1
Since £ is not a zero-divisor, cf. Lemma 3.3.2, g9 = 0. Proceeding by induction, we
find g, = 0 for all & > 0, thus f = 0. In particular, f € (p?¢ — &). O

Corollary 3.3.19. Let q € Nsy. The ring AL (R, RT) is p-torsion free.

Proof. We may check that the princial symbol o(p) € gr A (R, RY) is not a zero-
divisor, where we consider the associated graded with respect to the (p,&/p?)-adic
filtration, cf. [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)]. To compute
the associated graded, we first notice that it is canonically isomorphic to the associated
graded of Al (R, R"), equipped with the (p,£/p?)-adic filtration. The sequence
P, &/p? € Alg (R, RT) is regular: /p? is not a zero-divisor by Lemma 3.3.18, and the
image of pin Al (R, RT) / ({/p?) = R* is not a zero-divisor as well, cf. Lemma 3.3.10.
Now apply [28, Exercise 17.16.a] to get an isomorphism

b3t (R R) = bl (B R) = (R9) |0 ()0 (5 ).

where the principal symbols o (p) of p and o (£/p?) of £/p? are homogenous of degree
1. This proves Corollary 3.3.19. O
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Here is a variant of Lemma 3.3.10:

Lemma 3.3.20. 0;¢: Ayy¢ (R, RT) — RY factors through strict epimorphisms
9;%: Ajﬁ (R, R+) — RT
of W(k)-Banach algebras for all ¢ € N. If ¢ > 2, then their kernels are principal

ideals generated by the £/p?, which are furthermore non-zero divisors.

Proof. The map 95{{ is the completion of bounded linear map
0in: Alr (R, R*) — RT,

where AL (R, RT) carries the (p,£/p?)-adic topology and R' is equipped with the

p-adic topology. In particular, we gave a commutative diagram
AGq (R, RY)
T ‘i (3.3.5)
At (R, RY) -2 R+,

where ¢ is the canonical map. Since ;¢ is a strict epimorphism, cf. Lemma 3.3.4,
[52, Proposition 1.1.8] implies that 677 is a strict epimorphism.

To prove the second statement, consider the sequence

>
§/p? 4%

0— A (R, RT) = A (R,RY) = R" — 0
By the proof of Corollary 3.3.19, its associated graded is

o_ﬁ<Rvm[a@»a(ﬁﬂ}“ﬂ?(RWM[U@%“(£>}

pq
r077
(R /p) [0 (n)] — 0
It is exact, thus [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)] applies. [

Here is a variant of Lemma 3.3.5(i).

Lemma 3.3.21. Fiz an element f € AJL (R, RY), ¢ € Nso. If &/p? divides fp then
&/p? divides f.

Proof. Weget 0 =077 (fp) = 031(f)p € R™. This gives 67%(f) = 0, and Lemma 3.3.20
implies that £/p? divides f. O
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3.3.2 Inverting p

Apply Lemma A.0.2 to get the seminormed ky-algebra
Bint (R, R") := Aun¢ (R, R") @w(x) ko
and the kg-Banach algebra
Bint (R, RY) := Aiur (R, RY) Bw(wyko.
Remark 3.3.22. B¢ (R, RY) is not complete, as it does not contain »_ _,&"/p™.
Similarly, we introduce the Bins (R, RT™)-Banach algebras )
Bii (R, RY) = Aly (B, B") @weko and
Bi" (R, RY) := AZL (R, RY) ®w(mko
for all ¢ € N. For ¢ = oo, we have the Bin (R, R™)-ind-Banach algebras
By (B RY) = A (R, R") @wmhko = Al (B, BY) Bwmho,
cf. Notation 3.3.8. Write Blji (R, R*) := B3;" (R, R") and note that
Bl (R.R") = “lm” Bl (R.R).

qeN
Definition 3.3.23. The By, (R, R*)-ind-Banach algebra Bt (R, RY) is the relative
positive overconvergent de Rham period ring. Whenever (R, RT) = (K,K™") is a
well-understood perfectoid field, we refer to ng = BL‘Q (K, K™) as the positive

overconvergent de Rham period ring.

Lemma 3.3.24. The morphisms

Bit (R, RY) <1%> — BY% (R, RY)

are isomorphisms of I@inf (R, R™)-Banach algebras for every q € N. They are a iso-

morphisms of Big (R, RT)-ind-Banach algebras for ¢ = oc.

Proof. We may assume ¢ < oo without loss of generality. Compute

Biwt (R, RY) <5>

pq
-t (B (. (S) 8 B (5))

pq

E—piy ~
>~ coker (Amf (R,R") <£> i Aing (R, R") <1¥>> Qw () ko
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where we have used Lemma 3.3.9 in the last step. O

Recall Fontaine’s maps 6i,¢, 035 for all ¢ € N, and QZIR. They induce morphisms

~ ~

Oint Oy (1 id —~ ~
ﬁinf: Binf (R7 R+) ' M o R+®W(H)k0 — R

) 93R®W(~) idkg
—_—

Vi - Bin (R, R* R ®@w(mhko — R,

0 By id — ~
I Bl (RRY) ST Ry gk — R

of ky-Banach, respectively kq-ind-Banach algebras. We refer to them again as Fontaine’s

maps.
Lemma 3.3.25. The maps 1/9\inf, 193’;{, and 192’;;, are strict epimorphisms.

Proof. We have to check that the maps Qinf@w(,{) idy,, QZQ@W(,{) idy,, and HLE’I;I@W(H) idy,
are strict epimorphisms. But the completed tensor product preserves strict epimor-

phisms, cf. [14, Lemma 3.7]. Now apply Corollary 3.3.4 and Lemma 3.3.10. O

3.3.3 Inverting ¢, Fontaine’s 2m:

Assume that K admits a compatible system 1, (,, (2, ... of primitive pth power roots
of unity, that is (5 w1 = Gpn for all n € N. We fix such a system. Since each (,» satisfies
the monic polynomial LP" —1 € L*[X] and K is integrally closed, it follows that this
system {(yn}, oy lies in K. Thus we have € := (1,(,, G, ...) € K’". Furthermore,

fe—1)=1-1=0. (3.3.6)
Definition 3.3.26. The computation (3.3.6) allows us to define

([e] = D

«

t :=log([e]) = log(1+ ([e] = 1)) = Z(_l)a—l—l

a>1

=S () ey

a>1 p

Here, we are using that o divides p® in n in Z,,.

Notation 3.3.27. Introduce the following W (k)-ind-Banach algebra

W1 » Al Clee 9 tx 1 tx 1 tx )
. DY
lim AdR = “lim < E— AdR E— AdR — ... ).
tX
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The multiplication is

“lim 772t><u

Wy m Al S W1 ? ALl A w1l S 1 — €12 ? Al A Wi gl
hLQ AR Ow (x) hi@ A = h_r)n AR®wwAgr — hiﬁl Agr = h_r)n Adr
tx tx 2t % 2t % tx

where p is the multiplication on Alz. The unit is induced by the unit W (k) — Alg.

Recall Notation 2.3.1 and define, for all ¢ € N, the ky-ind-Banach algebras

Bl (R, RY) :=BY (R, R") @4 “lim” Al and
tx

dR

]B%;P‘{ (R7 R+) — Bg}g,-ﬁ- (R, R-‘r) @Al “hLQ”AglR'
tx
For ¢ = oo, we define
B3 (R, RY) =By (R, R") @ “lim” Alg
tx

= Bjﬁ'{ (R’ R+) @AéR « ll_H)l ” A(liR

tx
Write Bl (R, Rt) := B3 (R, RY).

Definition 3.3.28. B! (R, RY) is the relative overconvergent de Rham period ring.
When (R, R*) = (K, K*) is a well-understood perfectoid field, we refer to Bl :=

BLR (K, K) as the overconvergent de Rham period ring.
The previous definitions depend a priori on the choice of .

Lemma 3.3.29. Fiz another choice € € K** of a compatible system of primitive pth
power roots of unity. Then there ezists a unique unit u € Ay such that ([e] — 1) =

u(le'] —1). Writing t' :=log ([¢']), u induces an isomorphism

“h_H)l 77A5R o 44@ 7;A(1;1R~ (337)
tx t'x

As a consequence, the definitions of Bly (R, R*) and Byl (R, R") for all ¢ € N as
well as Bl (R, RY) are independent of the choice of €.

Proof. Write = [e] — 1 and ' := [¢/]| — 1. The ideals (u) = (1) € Ajns coincide
by [16, Lemma 3.23]. Proposition 3.17(ii) loc. cit. furthermore says that u and g’
are non-zero-divisors, thus there exists a unit u such that g = uy'. Using again that

i and p' are non-zero-divisors, one deduces that u is unique with respect to that

property. Next, note that o 4 1 divides p® in Z, and define
p” w\® 1

= E —1)— (—) € Agg,

v a>0( ) a+1\p R
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satisfying ¢ = vu. Note that v =1 mod &/p, which is a unit. Since Alg is complete
with respect to the £/p-adic topology, c¢f. Lemma 3.3.9 and Proposition 2.5.11, [59,
Tag 05GI] implies that v is a unit. Similarly, write ¢ = p/v’ for some unit v €
Alg. In particular, ¢ = (vuv’)#. Then vuv’ is again a unit, giving rise to the
isomorphism (3.3.7). O

The previous definitions depend a priori on the choice of (K, K™).

Lemma 3.3.30. Suppose (R, RY) is an affinoid perfectoid (K, K1)-algebra, as well
as an affinoid perfectoid (L, L™). Then, for all ¢ € N,

Bl (R, RY) @ar (ki) 11_r>n Al (K, K)
~ BY (R, RY) @AéR(LLﬂih_r)n "Agg (L, LT) and
tr, X
B30 (1 1) By ey “lim Al ()
ti X
=~ ng’—'— (R, R+) @A(llR(LLJr)IZh_I)n ”A(liR (L, L+) .
tr, %

This implies

Bl (R, RY) 65A}m(K,Kﬂ “E—H; "Aggr (K, KT)
KX
>~ Bhy (RRY) ®u .0+ “lim "Ajg (L, L7).

tr X

Both tix € Alg (K,K") and t;, € Al (L, L") are given as t in Definition 3.3.26.

Proof. C' denotes an algebraically closed field, complete with respect to a non-trivial,
non-Archimedean valuation. Fix embeddings K, . — C and compute
Bl (R, R") @y, (i) “lim " Agp (K, K*)
te X
~ow h_H)l » ng (R7 R-i-)
tr X
> ng (R, R+) ®A}1R(C’C+) “hi)ﬂ”A(ljR (C, C+) .
ti X
This is in fact an isomorphism of k-ind-Banach algebras. We do this computation
again but over the base L to get
Bg’g (R, R+) gAéR(L,L+) “ h_H}”AéR (L, L+)
tr X
~u li_r)n” Bgﬂ- (R, R-i-)
tr X
= Eg’;{ (R, R+) gAéR(C»C+) “ h_II>1 ”AéR (C, C+)

tr, X

42


https://stacks.math.columbia.edu/tag/05GI

Similar computations work for ]B%jf{*. Now apply Lemma 3.3.29. Compute the colimit

along ¢ — 0o to get the result for IB%L’;C. O

3.4 The overconvergent de Rham period sheaf

Fix a locally Noetherian adic space X over Spa(k,k°). The constructions in the
previous section 3.3 are functorial, in the following sense. For an affinoid perfectoid
U € Xproet With U = Spa (R, Rt), Proposition 3.2.7 gives (R, R") = (5(U), 6+(U))
Thus on X'n

proét affperfd and for all ¢ € N, we get the presheaves

APP U = A (O(U),0F(U)),
AT T AL ((/9\(U),(/9\+(U)> , and
AR U = AZE(O(U), 07(U))
of W (k)-Banach algebras,
AgP: U — Al (O(U),04(1))

of W (k)-ind-Banach algebras,

/\psh ~

inf -
BY ™" U By (O(U),0F(U)), and
Bai P U = Byt (O(0), 01(1))

of kop-Banach algebras, and
By P U — Bl (O(U),01(1))

of ko-ind-Banach algebras. Write AT psh =AR" b and ng psh =B P sh,
Since k° does not contain a compatible system of pth power roots of unity, the

element ¢ does not exist on the whole site Xf» Therefore we pass to the

proét,affperfd -
completion C' of the algebraic closure we have fixed in section 3.1. Consider a cov-

ering of the form X¢ — X in X.4; the construction is identical to the one in the

proof of Lemma 3.2.3. On the localised site X,,0st/Xc, we have an element ¢ as in

Definition 3.3.26. This depends on a choice of e € K**. On XB ¢ afiperta/ X, We then
get the presheaves

BgﬁSh: U Big ((/’)\ U),

B™": U — By (O(U),

By U Bar (O(U),
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of kg-ind-Banach algebras. Write IB%S’II;S}I = B

We view all the presheaves of Banach algebras above as presheaves of ind-Banach
algebras, cf. Lemma 2.6.2. Now sheafification is allowed: Denote the sheafifications
of all the presheaves above by Ags, A%y, Al Bue, BYT, BZET, Bl B, BIY,
and BQR, for ¢ € N U {oo}, respectively. Since sheafification is strongly monoidal,
see Lemma B.1.5, all of these sheaves are sheaves of W (k)-ind-Banach algebras and
ko-ind-Banach algebras, respectively. By Lemma 3.2.6, these extend to sheaves of

ind-Banach algebras on the pro-étale site X, oct-

Definition 3.4.1. Bg’f{ is the positive overconvergent de Rham period sheaf. EER is

the overconvergent de Rham period sheaf.

Theorem 3.4.2. Fix a symbol
Xe {Ainf> Ajéa ALR; IBinﬂ ng,—'—a ]Bjjg

for g € Nso, together with an affinoid perfectoid U € Xpoe. Let U = Spa (R,RT),
where (R, RT) denotes an affinoid perfectoid algebra over an affinoid perfectoid field
(K, K™). Then the canonical morphism

X (R, R*) — X(U)

is an isomorphism of W (k)-ind-Banach-algebras and ko-ind-Banach algebras, respec-
tively. If K contains a compatible system of primitive pth roots of unity, then we get
the following isomorphisms of ko-ind-Banach algebras:

B3 (R, RY) ~ B3 (U) and

Bly (R, 1Y) = Bl ().
Remark 3.4.3. Theorem 3.4.2 also holds for X € {]B%gf{,BgR} and ¢ € N>y, We do not
know whether Aly (R, RT) — Al (U) is an isomorphism for finite ¢. However, we do
know that it is an almost isomorphism, where the almost setup is chosen as in [54,

Theorem 6.5]. We omit the proofs of these facts, as these results are not needed in

the remainder of this text.

We need the following Lemma 3.4.4 in order to prove Theorem 3.4.2. All filtrations

are descending.

Lemma 3.4.4. Consider a strictly exact sequence
M0 — M - -
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of filtered abelian groups. Assume that M" | Fil* M" has no p-power torsion for all s >
0. Equip each N € {M', M, M"} with the topology given by the open neighbourhood
basis

{p°N +Fil> N} ..

Then M*® is strictly exact as a complex of topological abelian groups.

Proof. Since M* is strictly exact as a complex of filtered abelian groups,

M ps M g M"

M®*®: 0 — — —_— =
Fil* M’ Fil* M Fil® M”
is exact for every s > 0. Now equip every N*® € {F ST Flf\f 7 T M,,} with the p-adic

filtration, that is
Fil! N* := p'N*® for all [ € N.

Then M** is strictly exact. This follows from the observation

M M
i (p b M’) =pd” (Fils M’) = p'kerd’

for all I € N. The last step of this computation used that A"/ Fil®* M" has no p-power

torsion. This implies that the complexes

M/
— wrar/” — we/” — e/
Fear /P T Fe M/ P TR 15 M

are exact for all s > 0. But these complexes are isomorphic to

M M M
PM +FEM  pM+FEM  p M+ Fil M”

This implies
dp’M'+FilI* M) =d (M")N (p°M + Fil° M) .

That is, M* is strictly exact as a complex of topological abelian groups. O]
Proof of Theorem 5.4.2. It suffices to check

(i) At (R, RY) = A (U),

(ii) AZE(R.R) — AZ (V).
and, if K contains a compatible system of pth roots of unity,

(iii) B (R, RT) — B{ (V).
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This follows from Corollary 2.2.2 and Lemma 3.3.15, as well as Lemma B.1.2, applied
to the Corollaries 2.3.5 and 2.3.7. Note that these results apply, because A, (R, RT)
and Aglg (R, RT) are p-torsion free, cf. Lemma 3.3.1 and Corollary 3.3.19; here we
are using that ¢ > 2.

h h h
We check that A%, ATPP and B ™" are sheaves.

(i) By Lemma 2.6.2, it suffices to show that APY is a sheaf of W (k)-Banach alge-

bras. We are working on the site X

proét afiperfds 011US we have to show for every

finite covering {U; — U}, that the complex

0 — APR(U HAth ) HApsh (U; xy Uy) (3.4.1)

1nf inf inf

of W (k)-Banach spaces is strictly exact !. Since the products are finite, both
[T, A>" (U;) and [, AP (U; xy Uj) are again W (k)-Banach spaces. In fact,
they carry the (p, [p D = (p,¢)-adic topologies. Now Lemma 3.4.4 applies,
because of Lemma 3.3.5(i), and it implies the following: It suffices to check that
the complex (3.4.1) above is strictly exact, where the abelian groups APY(U),

[T, AX (U;), and ], J AP (U; xy U;) carry the €-adic filtrations, that is

inf inf

Fil" := ()" for all n € N.

This would follow once we computed that the associated graded complex is
exact, cf. [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)]. This is
allowed because AP (U), [T, AXF (U;), and [1:; AP (U; xy U;) are E-adically
complete. Indeed, the products are finite and every Aﬁffh (V) is complete for
every affinoid perfectoid V, cf. the proof of Lemma 3.3.3. By Lemma 3.3.2
and [28, Exercise 17.16.a], the associated graded of the complex (3.4.1) is

0—>(/9\+( —>H(’)+ (©)]

— [[ 0" U xv U;) [0 (8)],

i?j

which is exact by [54, Lemma 4.10]; o (§) denotes the principal symbol of &.

The proof of (ii) is almost identical to the proof of (i).

Tt has been shown in [54, Theorem 6.5(i)] that the underlying complex of abstract W (x)-algebras
is exact. However, the proof given loc. cit. does not establish strictness.
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(i) Tt suffices to show that A7 is a sheaf of W (x)-Banach algebras, see Lemma 2.6.2.

We are working on the site X"

proét affpertd> t1US we have to show for every finite

covering {U; — U}, that the complex

0 — A7) — T A5 (U) — [ AR Ui <0 U)  (34.2)

of W(k)-Banach spaces is strictly exact. Since the products are finite, both
[T, A;27" (U;) and I, AZEP (U; %y Uy) are again W (k)-Banach spaces. In
fact, they carry the (p, {/p?)-adic topologies, Now Lemma 3.4.4 applies, because
of Lemma 3.3.21, and it implies the following: It suffices to check that the
complex (3.4.2) above is strictly exact, where the abelian groups Ajg’pSh(U ),
[T, A;2P" (U;), and [ AZEP (U, x Uj) carry the €/pP-adic filtrations:

j
Fil" := (é) for all n € N.
pq
This would follow once we computed that the associated graded complex is
exact, cf. [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)]. This
is allowed because AZIP™(U), [T, A7&"" (U;), and [, AZIP (U xp U;) are
¢ /p?-adically complete. Indeed, the products are finite and every Agﬁ’pSh(V) is
complete for every affinoid perfectoid V, cf. [59, Tag 090T|. By Lemma 3.3.20
and [28, Exercise 17.16.a], the associated graded of the complex (3.4.1) is

0— 0w |0 ()] —IIo" @ - (50)

i i

2 3
—>HO+(U1 XU U]) [O’ (E ,
Z?]
which is exact by [54, Lemma 4.10]; o (£/p?) denotes the principal symbol
of £/p?. The assumption ¢ > 2 is used in the application of Lemma 3.3.18

and 3.3.20.

(iii) Let ¢ € K°* denote a fixed compatible system of primity pth roots of unity. By
Lemma 3.3.29, we can safely assume ¢ = ¢, the compatible system fixed earlier
on in this subsection. We have also fixed the completion C' of an algebraic
closure of k, for which we fix an embedding k& — C'. Furthermore, there is the
canonical isomorphism of ky-ind-Banach algebras

B (V)= "l B3 (1)
tr X

>~ Bt (R, RY) @1 (con “lim” Al (C,CT) .

ti X

(3.4.3)
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for any affinoid perfectoid V € X,,06/Xc; here we applied Corollary 2.3.5,
using (ii) and the strict exactness of filtered colimits. Now compute, given the
covering Uc = U Xgpa(i,ix+) Spa (C,CT) — U,

B (U)
= ker (Bgs (Uc) — Bg (Uc xuv Uc))
B (Uc) 65A}]R(C,Cﬂ “lim” Ajg (C,C7)

3.4.3 —
=~ ker Y _
— IB%‘{’JF (Ue xu Ug) ®al. (ccH) “ h_n)l”AéR (C, C’+)
tr X
Bast  (Ue) @ay k) “ lim ™ Al (K, K7)
0y o
— Bt (U xu Uo) @1 (re.ie) “lim " A (K, KT)
tr X
= ker (Bt (Uc) — Bt ™ (Ue xu Uc)) ®u1 ity “ lim ™ Al (K, KT)
ti X
= Bt (U) @as, xe.0) “lim " Alg (K, K)
tie X
(11) o~ 3 7
= IB(?P%HF (R, R+) ®A3R(K’K+) “11_11}1 AcllR (K, K+>
ti X
=B (R, R")
This finishes the proof of Theorem 3.4.2. O

3.5 The overconvergent de Rham period structure
sheaf

Keep the notation from subsection 3.4 fixed. X denotes again a locally Noetherian
adic space over Spa(k, k°).
For every ¢ € NU {00}, we introduce the presheaves k-ind-Banach algebras

~ ker Obng\ ~
OBI ™" U = “lim"U +— “lim” (O™ (U})@w () Aint (U)) <—er f> Qpok

a
iel iel p
ﬁn o). . .
on X U aftperta- 11€r€, Oy denotes the composition of the surjections

pt

O+(Ui)@W(H)Ainf(U) B O+(Ui)6§W(n)6+<U) — O7(U),

where p* denotes the multiplication. O (U;) carries the m-adic seminorm.
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Remark 3.5.1. The kernels of the maps Of;,¢ are finitely generated. This follows from
Lemma 3.3.10 and because the kernel of " is finitely generated. Now Lemma 2.5.10

allows to give a more concrete definition of OB%T " (U).

Since sheafification is strongly monoidal, c¢f. Lemma B.1.5, the sheafifications
OB% of OIB%gg’pSh are sheaves of k-ind-Banach algebras. They extend, by Lemma 3.2.6,
to sheaves on the whole pro-étale site, which we denote again by OIB%gg.

Use Lemma 2.6.2 to view the structure sheaf O on X as a sheaf of k-ind-Banach

algebras. The canonical morphisms
—1 S + +
v O®k0 BgR - EgR

are morphisms of sheaves of k-ind-Banach algebras, cf. Lemma B.1.5. This makes
OIB%g’;{ a sheaf of v710-ind-Banach algebras, and a sheaf of Bg’;{—ind—BanaCh algebras.

The maps OF;,; induce morphisms
0% OBYE — O
of sheaves of k-ind-Banach spaces for every ¢ € NU{oo}, by Lemma 2.5.9 and B.1.5.

Definition 3.5.2. OIB%L’}—{ = OIB%Z%’JF is the positive overconvergent de Rham period

structure sheaf.

Again, ¢ € NU {oco}. C denotes the completion of an algebraic extension of k
that we have fixed in of section 3.1. CT C C is a fixed ring of integral elements.
The element t € A}y := Alg (C,CT) has been introduced in Definition 3.3.26. Recall
Notation 3.3.27 and define the following sheaf of k-ind-Banach spaces on X0t/ Xc:

+ 175 )
OBy = OBy ®ay, " lim Alr.
tx
By Lemma 3.2.6, OB, extends to a sheaf on the pro-étale site, which we denote

again by OBl;.

Definition 3.5.3. (’)IB%(ER = OBgy is the overconvergent de Rham period structure
sheaf.

We aim to describe the period structure sheaves locally, in the spirit of [54, Propo-
sition 6.10]. Assume that X is affinoid and equipped with an étale map X — T := T¢.
Here we define, for all e € N,

T¢ = Spa (k (T;77, . T7) ke (T, 7))
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: ~d . 9 rd d . d @7 )
Write T = y Tg € Thog and X := X Xqu T . Every U = “lim _ "U; €

“lim
——ec

~ ~  ~d
Xprost /X gives rise to a morphism U — X — T in Pro (Tzroét

). It is thus given by

a compatible system of étale maps U;, — ’]I‘Z for a fixed iy € I and varying e.
Notation 3.5.4. Fix such an 7 € I.

Consider the images of the elements T}, ...,T; € OF (Tg) in OF (U;) for all i > i
and e large enough. Abusing notation, denote them again by T1,...,Ty.

w =Ti®1 — 18 [T} € O (U)Bw (At (U) (3.5.1)
foralll=1,...,d, every U = ¢ @ie[ "U; € Xproét,aﬁperfd/)?, and 7 > 1y. Here

7= (0,171 ) e (5+(U))b.

Since those u; lie in the kernel of Of;,¢, the canonical maps

—~ ker ¥}
Alr(U) = (07 (U)®w (r)Aunt (U)) < P >
extend with Corollary 2.4.11 to the morphisms
. Zd ker ¥

Air(U) <Zh—> — (OM(U)@w (At (V) < > , 21 [Pt g [p?

i i

of Al (U)-Banach algebras for every ¢ € N. Here, the Z; denote formal variables 2.
Invert p and pass to the colimit along ¢ € I to get

Zi,..., 4,
B (U): B (0) () - OBt ),

The data of these maps ®% (U) define morphisms

+,psh . ,+ 1, s Ld
@‘L ps . BgR | N}: <

psh
q,+,psh | _
4 > — OBgr ™ |3

of presheaves of IB%g’;{ | 7-ind-Banach algebras on Xproct/ X , where
7 21, Zg\ P , AR
iy (BB g ()
By Lemma B.1.5, its sheafification

Zi,...\ %
o Bl % <—

pq

> — OBl |5

2[54] denotes Z; as X;. We use different symbols to avoid confusion with the space X.
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is a morphism of sheaves of ng | z-ind-Banach algebras. Here,

sh\ sh
Bq7+‘N<Zl7"'JZd> o Bq,+|N<Zl7"'7Zd>p
dR IX pa : dR X P :

Now pass to the colimit along ¢ — oo to obtain the morphism
AT/
o Bl 5 (2o L omft |
pOO

of sheaves of B | -ind-Banach algebras. Finally, using the notation in the paragraph
following Definition 3.5.2,

sh
T - O
®C «— @ |XC®A5R 1d“h—r>ntwaéR .

This is a morphism of sheaves of By | )?C—ind—Banach algebras on Xproét/:ijc7 cf.
Lemma B.1.5. By Lemma 3.2.6, there exists a unique morphism ®' with CI>T|5ZC = (I>TC.

Write

Zu. ... 7
o BLR |)? <T> - OBLR |)?

BQR |% <%> is the sheafification of the presheaf whose restriction to )A(:c is

Zive I\~ Ziy. .\ 2
U~ Bl (U) <1T> Day “lim” Al = Bl (U) <IPT> -
tx

Theorem 3.5.5. Let X be affinoid and equipped with an étale map X — T, giving

rise to the pro-étale covering X — X. Then the morphism
VAT ~
o' B Iy () = OBl I
pOO

is an isomorphism of sheaves of ]B%(Tj’;{ |z-ind-Banach algebras, and

Ly Zg\ =
o B (B ) =
s an isomorphism of sheaves of ]B%ZlR | z-ind-Banach algebras.

Remark 3.5.6. Theorem 3.5.5 implies its version [54, Proposition 6.10] for OB} via

taking t-adic completions, locally on the pro-étale site.

We prove Theorem 3.5.5 in subsection 3.6.
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Corollary 3.5.7. Let X be affinoid and equipped with an étale map X — T¢, giving

rise to the pro-étale covering X — X. The morphism
VAT ~
Bl (7 RY) (2o 20) =, 0Bl (0)
pOO
2y —
of ]B%Zl’g (R, RY)-ind-Banach algebras is an isomorphism for any affinoid perfectoid
U e Xpmét/y with U = Spa (R, RY). If further U € Xpmét/)N(K for a perfectoid field
K containing a compatible sequence of primitive pth roots of unity, then
Ly Lg\ =~
s () (B2 2. cnf )
Zl — Uuy.

Proof. 1t suffices to check that
~ ~ Ziy.., 7,
U Bl (O(U),0%(1)) <1Tﬂ> (3.5.2)
is a sheaf on Xgﬁ)ét’aﬁperfd.

But the sheafiness of (3.5.2) follows from Theorem 3.4.2 together with Lemma B.1.2,
which applies because of Corollary 2.4.16. n

Indeed, then we can apply the Theorems 3.4.2 and 3.5.5.

Remark 3.5.8. Write (’)IB%II’}'{’I’Sh = ]B(Tl’f’ps}l. Then, for any U € Xproét/j\(:,
< -~ < iy Zg\ iy Za\
omlie ) = Bl (o) (DB o gy o) (D2 > om0
by the proofs of Theorem 3.5.5 and Corollary 3.5.7.

3.6 Proof of Theorem 3.5.5

Fix the setup as described in Theorem 3.5.5. It suffices to check that CDL’Q is an
isomorphism. We may show that the maps
2y

Z, ..
,+,psh X , 1, ,+,psh
B (U) Bl ) (P ) — 0Bl )
are isomorphisms for every affinoid perfectoid U € X ot /)/Z . Fix such a U with
U = Spa (R, R*), together with a pro-étale presentation U = ¢ lim _ "U; € Xpmét/kv,
U; = Spa (Ri, Rf) for all © € I. Let i > ig be arbitrary, cf. Notation 3.5.4. We will

show that the morphism

7. .7 _ ker Ofs\ ~
is an isomorphism. This suffices because ®L P (U) = lim,_, i
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Lemma 3.6.1. The assignment T; — [1}] + Z; defines a unique morphism
Ej_ Rj_ - Ainf(‘RJ R+)|Izla ) Zd]]
of W(k)-algebras. It fits into the commutative diagram

o
Rj_ — Ainf(R, R+)[[X1, c. ,Xd]]
loe;nf (3.6.2)
R+

where O is the map Y, xa 6aX® — 0 (ag).

In order to prove Lemma 3.6.1, we cite the following multidimensional version of

Hensel’s Lemma from [24, Corollary 4.5.2].

Lemma 3.6.2. Fix a commutative, linearly topologised, Hausdorff and complete ring
A, as well as a closed ideal m C A, whose elements are topologically nilpotent. Let
f=(f1,..., fa) denote a tuple of polyomials in A[L] in variables L = (Lq,..., Ly,)
and let J;(L) € A[L] denote the Jacobian, that is the determinant of the matriz

Gr) - Ge),,.

Consider a € A" such that J¢(a) is invertible in A and f;(a) =0 mod m for all
1 =1,...,n. Then there exists a unique xr € A" such that xr; = a; mod m for all i

and fi(z) =0 foralli=1,... n.

.....

We closely follow the [54, proof of Proposition 6.10].

Proof of Lemma 3.6.1. Pick a finitely generated W () [T, ..., T;"|-algebra R;; whose
p-adic completion is R;” such that Ry = Rijj[1/p] is étale over W (k) [1/p] [T}, ..., T '],

see [54, Lemma 6.12]. This gives a finite presentation
Rio= (W(x)[1/p) [TT",. ... T7']) [Lit - - -, Lind) / (Paa, - - ., Piny)

such that the Jacobian Jp(L) is a unit in R;y. Here we used multi-index notation
L:=(La,...,Liy,) and P := (Py, ..., Py,), omitting the index i for clarity. Without

loss of generality, we can assume that
(i) Li; € R for every j =1,...,n;,
(ii) Py € W(k) [T, ..., Ty [La, - - -, Lin,) for every j =1,...,n;, and
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(iii) the Jacobian Jp(L) € Ry is invertible.
Here is why:

(i) Because Ry = Ry [1/p], there exists an s € N such that Lj; := p°L;; € Ry, for

all j =1,...,n;. Indeed, we have
Rio= (W(k)[1/p] [T, ..., T ) [LE, - L] ) (Pas - Pry) -

Write L := (L}, ..., L}, ), omitting again the subscript i. We claim that the

Jacobian Jp (L) is still a unit in R;p. The chain rule yields

et =aat (7)) = ((52) - (7))
-t (7)) e ((57))-
Jp (L) is a unit by assumption and

aL+)) _ S _ TS
det <<O_L =det (p°l,,) =p

is a unit in R;y. Thus det ((;L—ﬁ)) is a unit in R, too, as desired.

(ii) We have to multiply each P;; by a suitable power of p. Note that this multiplies
Jp (L) by a power of p, such that the Jacobian is still a unit in R;.

(iii) Multiply each P;; with an appropriate power of p such that J(L) becomes
invertible in Rj,. Note that this does not affect the assumptions (i) and (ii)

above.

Assume (i), (ii), and (i) without loss of generality. The [1}] + Z; are invertible in
Aint (R, RY)[Zy,. .., Z4], with inverses Y, o (—=1)" [17] o Z". Therefore, we have
a morphism

W) [TT, ... Ty — A (R, RT) [ 24, ., Z4] (3.6.3)

of W (k)-algebras sending T} to [T7] + Z; forall I = 1,...,d. Let P/; denote the image
of the polynomial P;; under the map

W(R)[TE, . T L, - - -y Liny) — Aing(R, RO [Z4, - .., Za][Lat,s - - -, Lin,]

induced by 3.6.3. We summarise the setup and compare it to Lemma 3.6.2.
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e Equip A := Ay (R, R")[Z1,...,Z4] with the (p,&, Z1,. .., Zy)-adic topology.
Apply Proposition C.0.1 to Corollary 3.3.3 and find that this defines a commu-

tative, linearly topologised, Hausdorff, and complete ring.

e The ideal m := (£, 71, ..., Zy) is closed. Indeed, it is the kernel of the map

A= Aig (R RY) [ 21, Za] = BT, a2 O (ag)
aeNd
which is continuous. Here, R™ carries the p-adic topology. The elements of m

are topologically nilpotent because its generators are.

e We have polynomials P/|, ..., P/ inAw¢(R,R")[Z1,..., Za] [Lirs- -, Lin;]. They

in;

correspond to the elements f; in Lemma 3.6.2.

e We have Ay (R, RN)[Z1, ..., Za]/m =, R*. Since R, C R™, one can pick lifts
Li; € Apg(R, RT)[ X1, ..., Xq4] of the elements Ly, ..., Li, € R, Write L/ =
(L}, ..., L., ), omitting the index 7 for clarity. Then the Jacobian Jp/ (L') is a lift
of Jp(L) € Rj,. Since the latter is a unit, [59, Tag 05GI] implies that the lift is a
unit. Here we have used that Ay, (R, RT) [Z1,. .., Z4] is complete with respect
to the m-adic topology. This follows from Lemma [59, Tag 090T], because
Aig (R, RY)[Z4,...,Z4] is complete with respect to the (p,&, Z1, ..., Zy)-adic

topology, as explained above.

e We have P/"(L;;) = P;(Li;) = 0 modulo m for every j =1,...,n;.

Thus one can apply Hensel’s Lemma 3.6.2. We find a unique tuple L= (f“, cee Lm)
with entries in A (R, RT)[Z1, ..., Z4] such that P;; <sz) =0 and Zij = Lj; modulo

m for all 7 = 1,...n;. Now define the map
E;'B Rj(_) — Ainf(R, R+)[[Z1, ey Zd]]

of W(k) [Tli, o ,Tdﬂ—algebras by Li; + Eij for all j = 1,...,n;. Ay (R, RY) is
p-adically complete by Lemma 3.3.1, thus Ay (R, R") [Z1, ..., Z4] is p-adically com-
plete by Lemma C.0.3. Therefore, ¢, extends to the desired morphism € by con-
tinuity. Here we have used that R; is p-adically complete, which can be seen with
arguments similar to the ones at the [12; end of the proof of Lemma 3.6.1].

The uniqueness follows from the following: €/ is determined by its restriction to

R, and this restriction is unique by Hensel’s Lemma 3.6.2.
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Finally, we get the commutative diagram (3.6.2) from the computations

Oe;nf(g;r (Lij)) = Ol <zu) = O (L;j) = L

forall j=1,...,n,. O]

Notation 3.6.3. Introduce the following bounded linear map

Ezr: Rj i Ainf (R7 R+) [[Zlv R Zd]] —>Ainf (R7 R+)

g o2 —ay.

a€ENd

The map €; gives Ay, (R, RT) the structure of an R;-Banach algebra and ¢; :=
ej@w(ﬁ)ko makes By (R, R") an R;-Banach algebra. We want exhibit ¢; as a base-

change of a certain 7; along ¢;, following the proof of the local description of OB, [55].

Notation 3.6.4. Denote the multiplication R} @y R — R by ;.
Lemma 3.6.5.
Gt .= (idRT @W(m)€f> (ker pii7) U {1@5} - Rj@w(ﬁ)Ainf (R,R")
generates the ideal ker Of;¢.
Proof. Drop the subscripts W (k) for clarity. Oy, is the composition
R @A (R, RY) "% R¥GRT 5 R*,

where pT is the multiplication. Clearly, 1®¢ € ker Of;,. For every g € ker i

Qi ((idef @ej) (g)) = (,u o (ide @@M) o (ide 68?6?)) (9)

= (NO (ing’éé (Qinf © 6;))) (9)

2 (o (idpe @) (9)
— 0,

(3.6.4)

where Lj_i Rf — R™ is the canonical map. This proves (G) C ker Of;,e. We aim to

show O via computing that Of;,; induces an isomorphism
(R @A (R, RY))/(G) — R*.
By the third isomorphism theorem, this breaks into two parts. First,
(R @A (R, RY))/(18€) — R{ @R (3.6.5)
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this isomorphism is induced by id R ® Obins. Second, ' induces
(RIBRT) [ ((idgs Bbinr) ((idy- Bl ) (kerpf))) — R*. (3.6.6)
The first isomorphism comes from the strictly coexact sequence
Ags (R, RY) =5 Ay (R, RY) — R* — 0,
cf. Lemma 3.3.2 and Corollary 3.3.4. Indeed, applying RT@W(,{) gives the sequence
R} ®Au (R, RY) =5 RI @Ay (R, RY) — Rf@RT — 0,
which is strictly coexact. This gives (3.6.5). Regarding the second isomorphism (3.6.6),
<(idR;r @Gmf> ((idR;r @ef) (ker puf) )) = <ide @LT) (ker 117)
by the computation 3.6.4 above. We may thus write (3.6.6) as
(Ry®RT) [ ((idgs ®) (kerp)) — R*. (3.6.7)

We claim that the image of ker 7 € A := RF®R} in B := RfQR" generates the
kernel of the multiplication map as an ideal. Apply [2, Theorem 4.1.4] to get an exact
sequence of finitely presented A-modules
A" — A M—’i RS — 0.
Apply the functor —®4B to get an exact sequence of finitely presented B-modules
pi®aidp

B" — B 57" Rf©,B — 0.

The functors —@RgrR and —®4B are isomorphic on finitely generated A-modules.
This is because both are suitably right exact, and both send A to B, up to natural

isomorphism. Hence we get the exact sequence
B"— B RI® R = RY — 0.
One the other hand, u*: B — R™ kills the image of A" in B, giving a complex
+
B" — B+ R" — 0.

One checks that this complex is equal to the previous exact sequence: the only non-
trivial part is to show that pu* and v™ coincide. But v™ is the composition
L~ ~ ~ pi®aB N > n
Rf®@Rt =B ——— A®4B ———— R ®aB —— R,

ros —— (r@l) ® (1@3) — r® (1@3) —> T8,

which shows the claim. It follows that the image of ker uj” C A in B generates the
multiplication map. This gives (3.6.7). O
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We use Lemma 3.6.6 without further reference.
Lemma 3.6.6. R; is an affinoid k-algebra.

Proof. The étale map U; — T? induces an étale morphism k <T1i, e ,Tdi> — R; of
Huber rings. Now apply [37, Proposition 1.7.1(iii) and Corollary 1.7.2(ii)]. O

Lemma 3.6.7. Let A denote a kg-affinoid algebra and fix a finite set of elements
S1y.-.,8, € A. Set I := (g1,...,9n) and consider
wi: A <u> — lim A/
P e
for all ¢ € N. Then the ker w? are Banach spaces and li_n}q kerw? = 0 as a ky-ind-

Banach space.

Proof. Write I, := A (#2223 [ Then

T4
for all [, thus the kernel of w? is the intersection of the ideals [ é. But any ideal in an
affinoid algebra is closed, see for example [22, section 6.1.1 Proposition 3]. Therefore
ker w? is closed, thus complete. In particular, we may view it as a Banach space with
the restriction of the norm on A (=),

By the Krull intersection theorem, there exists an element f € I, such that
(1= f)kerw, = (1— f)[ 1. = 0.
l

Now consider the commutative diagram

for any ¢’ > ¢, where the horizontal maps send each (; to s;. Pick ]7 such that
v (f) = f. Since f € I,, we may assume that fe (¢1,-..,Cu)- In particular,

g (DI < 177 (T (F)) | < g (F) I < Il 21F]-

That is, we may chose ¢’ large enough such that ||z, (f)]| < 1. But then ¢y, (1 — f)
becomes a unit: its inverse is Y tq.q (f)". Thus ¢44 (kerw?) is killed by a unit,

thus it is zero. In other words, ker w? C ker 194", Tt follows that

limkerw? C lim ker¢yy = ker lim ¢4 = 0.
111 ] : 1 L,
=0 q'>9>0 q'>q>0
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But ¢ := li_r>nm/2m20 Lq.q 18 Dby definition an automorphism of h—n>1mzo A <“>’17T_qsn>7 thus

ker . = 0. This implies lim __ kerw? = 0, as desired. O]
—q>0
Notation 3.6.8. Denote the multiplication Ri@koRi — R; by u;.

Proposition 3.6.9. Fiz generators (si,...,s,) = ker u;. We have an isomorphism

T RZ <Zl7"0;>7Zd> i (Rz@koRz) <Sl7"o'oasn>
p p

extending r — 1@r and sending Z; to T)®1 — 1&T, of k-ind-Banach algebras.

Proof. By [42, Lemma 2.3] the canonical morphism
—~ S1y...,5n o —~
(RER) (22) 2 (RE, R),

is an isomorphism of k-ind-Banach algebras. Here, the colimit on the left runs through
the system of affinoid open neighbourhoods U 2 A (Sp(R;)) and (—)y denotes the
corresponding localisation. In particular, the constructions in the [58, proof of Propo-
sition 6.31] apply. Loc. cit. constructs a morphism 2
o (Ri@koRi) <51, : .O.o,sn> R, <Zl, : .0;37 Zd> |
p p
such that o; o 7; is the identity. [52, Proposition 1.1.8] implies that o; is a strict
epimorphism, thus it remains to check that it is a monomorphism. To do this, we
apply Lemma 3.6.7 for A := Ri@koRi and [ := kerpu;. Loc. cit. considers the

morphism w;, which fit into the following commutative diagrams:

(R@ko&) <31,...,sn> 7 . R, <z1,...,zd>

p P

lwg [ (3.6.8)

lim (R, Rs) [ (ker ju)) —=— Ri[Z,.... Zd] .

The morphisms 7, at the top are the compositions

~ S1,...,8n ~ S1y---y80\ o Li,..., 4
(REu) (B5250) — (RE,R) (Bt 2 p (B,

and the isomorphism at the bottom of the commutative diagram comes from [58,
Lemma B.7 and Corollary B.10]. The commutative diagram (3.6.8) implies ker 7 =
ker wf. Together with the aforementioned Lemma 3.6.7, we find

ker 7; = lim ker 7; = lim ker w! = 0,
q q

as desired. O]
3[58] denotes o; by 1 and 7; by ¢.
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Proof of Theorem 3.5.5. As explained at the beginning of this subsection 3.6, it suf-

fices to check that the morphism (3.6.1) is an isomorphism
Recall that BL}_{ (R, R") is an R;-Banach algebra via ¢;, cf. Notation 3.6.3. See
idgt .+ RﬂRJr)@RiTi. We claim

Proposition 3.6.9 for 7; and write v;

¢i = ;.

Because 1); is an isomorphism, this would imply that ¢; is an isomorphism

Step 1. The domain of ¢; coincides with the domain of ¢;
2.4.7 7 7
=~ Bl (R RY) < s d> .

Bt (R, ) B R (D)

Step 2. We compute the codomain of ;. Recall the generating set G of ker O;,¢

considered in Lemma 3.6.5. Additionally, fix a generating set S of ker u. By [2
Sp} is finite. Define

Theorem 4.1.4], we may assume that S = {sy,
U {1@5} C Ri@koﬁinf (R7 R+)

., S

G = <1dR, @koq‘) (81,.

and compute, for every ¢ € N

it (5 ) ()
" coter (B (1) ( pg ) ( 16— €) = Bue (R RY) <<>)
i é(&@km( es) (2 —s)
®pg, coker | =1
1®ko < >
P (Ri®roBins (R, RT)) <Cg G> ( ' )
>~ coker | 9°¢
(R@,mﬁ%mf (R, R*)) <}%: ge G>
D (BRI Bwiohi (R R")) <<f g€ > ( . 9)
>~ coker | 9€¢7 ®W(K)k0
(R @W(H)Ainf (R,RT)) <I%: ge G+>

o~ G\ ~
(R+®W )Ajng (R, RJr)) <p—> Qw () K
ker O@lnf> wko.

0 —~
(R @wiwhint (B RT)) < i

N
ot
RE
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Now pass to the colimit along ¢ — oo to see that ¢; and 1; have the same codomain

Bg’g (R, R") Ok, (Ri@kORi) <pi>

_ ker Ofr\ ~
= (R ®@wwhint (R, R)) <¥> ®w () Ko-

Step 3. Both ¢; and 1; are colimits of completed localisations of morphisms

2y, ..., Zy —~ ker Ofins
i (1,10 (D228 (i () (200
of Al; (R, RT)-Banach algebras, ¢ € N. Therefore, it suffices to check that both ¢;

and 1; coincide on the variables Z;, ..., Z;. This is an easy computation:

6i (Z1) = Ti®w(r)1 — 18w |T7] , and
Vi (Z) = (idgy Bwioel) (1 (22)
= (idps Bwin e ) (LiBww! — 18w T)
= Ti®w(wl — 1@w(x) [TH
foralll=1,...,d.
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Chapter 4

Differential operators meet p-adic
Hodge theory

Fix the notation introduced in subsection 3.1.

4.1 Infinite order differential operators on rigid-
analytic spaces

X denotes a smooth rigid-analytic k-variety. We recall the construction of the sheaf
D on X. Our main reference is [7]. X, denotes the category whose objects are the
affinoid subdomains of X and whose morphisms are the inclusions, carrying the weak

Grothendieck topology. The d-dimensional torus over k is
T :=Sp (k(T7,...,T;)) .

First, we assume that X = Sp A is affinoid and equipped with an étale morphism
g: X — T Compute the A-module of k-linear differentials of A:

d
L := Deri(A) = @A@l,
=1

where 0, denotes the lift of the canonical vector field d/dT; along the étale map
g”: O (Td) = k{T7,... ,Tdi> — O (X). These 0, do not need to preserve A :=
O(X)° in general. But because they are bounded, see [4, Lemma 3.1], we can find
ry > 1 large enough such that the 7”0, preserve A for every r > r,. Define the
A-submodule .
L:=(PAacL

=1

L, :=p'Lis an A-Lie lattice for every r > ry, that is [£,, L,] C L, and L,(A) C A.
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Remark 4.1.1. A priori, it seems more natural to define £, to be n" L. However, we

choose p over 7 because it simplifies the proof of Theorem 4.2.1.

We cite the following from [7, section 3]. Fix r > r,. Denote the pullback
O(X) — O(U) by w. An admissible k°-algebra is a commutative k°-algebra which
is topologically of finite type and flat over k°. An affine formal model in O(U) is an
admissible k°-algebra B such that O(U) = B Qg k. B is L,-stable if w(.A) C B and
the action of £, on A lifts to B. U is L,-admissible if it admits an L,-stable affine
formal model. X, = X, := X,, (£,) denotes the full subcategory of X,, consisting
of the £,-admissible affinoid subdomains. It is a site by [7, Subsection 3.2, Lemmal].

The coverings are the finite admissible coverings by objects in X,.

Definition 4.1.2. [7, Section 3.3, Definition] Let X be affinoid and equipped with an
étale morphism ¢: X — T Fix r > ry. For any L£,-admissible affinoid subdomain
U C X and any L,-stable affine formal model B in O(U), define

Do (U) =Dy (U) := U (B®4 L) Spo k.

The symbol U refers to the enveloping algebra of B® 4 L, as a (k°, B)-algebra, see [7,

subsection 2.1]. The completion is the m-adic one.

Regard D, (U) as a k-Banach algebra with unit ball U (B ® 4 L;).

Lemma 4.1.3. Let X be affinoid and equipped with an étale morphism g: X — T,
Fiz r > ry. The assignment
Uw— D,.(U)

defines a sheaf of k-Banach algebras on X,.
Proof. See [7, section 3.5, Theorem| and apply the open mapping theorem. O

Definition 4.1.4. [7, Section 9.3, Definition] X is affinoid and it admits an étale
morphism X — T¢. For every U € X,,, define the k-ind-Banach algebra

D (U) := lim D, (U),

cf. Lemma A.0.5. The inverse limits runs over all étale maps g: X — T% and r large
enough such that U € X,.

Lemma 4.1.5. X is affinoid and admits an étale morphism X — T%. Then

0—-DX)—[[DW)— [[DW, xvUy)
J 1,42

is strictly exact for any finite covering {U; — X}j by affinoids.
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Proof. This follows from Lemma 4.1.3. O

Definition 4.1.6. Let X be an arbitrary smooth rigid-analytic k-variety. By abuse
of notation, D denotes the unique sheaf of k-ind-Banach algebras such that for every

U € X, admitting an étale map U — T?, D (U) is given as in Definition 4.1.4.

Lemma 4.1.7. Suppose X is affinoid and equipped with a fixed étale morphism
g: X — T Then the canonical morphism 13(U) = im _ Dy, (U) is an iso-

morphism for any affinoid subdomain U C X.
Proof. This follows from [7, section 6.1, Lemma, (b)]. O

See [7, section 8 and 9] for the definition of the category of coadmissible D-modules
as a full subcategory of abstract D-modules. [18] realised it as a full subcategory
of the category of sheaves of complete bornological 5—modules, and thus as a full
subcategory of the category of sheaves of D-ind-Banach modules. We are interested
in a derived analog. Recall that every quasi-abelian category has a derived category,

cf. [52, section 1.2]. See also loc. cit. section 1.3 on derivation of functors.

Definition 4.1.8. Consider a closed monoidal quasi-abelian category E, admitting
a ring object R. Then the category of R-modules is again quasi-abelian, cf. [52,
Proposition 1.5.1.], thus it admits a derived category D (R). The category Dgerf (R) of
bounded perfect complexes of R-modules is the smallest full triangulated subcategory
of D (R) which contains R, and is closed under direct summands and isomorphisms.

A bounded perfect complex of R-modules is an object of D°_. (R).

perf

Definition 4.1.9. [18, Section 6] An object M* in the derived category of sheaves
of D-ind-Banach modules is a C -complez if there exists an admissible covering of X

by affinoids X; equipped with étale morphisms g¢;: X; — T% such that, for each i,

(i) M2 = ngég%\x. M?®|x,, is a bounded perfect complex of sheaves of Dy, ,-

ind-Banach modules for every r > r,,, and

(i) H (M®) = lim H’ (M?) for every j € Z.

—r>rg,
D¢ <73> C D¢ (73) denotes the full triangulated subcategory of C-complexes.
Remark 4.1.10. We remind the reader that the cohomology of a complex N* € D (5)
is not an object of the category Mod (5) but its left heart, cf. [52, section 1.2.2].

Remark 4.1.11. [18, Section 6] requires each M? to be a bounded complex of coherent
D,, --modules, but we require it to be a bounded perfect complex. Both definitions

are equivalent by the main result of [20].

64



4.2 The bimodule structure on OIB%SR

We continue to fix a smooth rigid-analytic k-variety X. Every affinoid k-algebra is
strongly Noetherian, cf. [57, Theorem 3.1.8.3] and [22, section 6.1.1, Proposition 3],
thus the adic space X4 associated to X is locally Noetherian. This allows to define
KXprost := (Xad)

.., the pro-étale site of X. The morphism of sites v is
proét

)(Pr()ét = (Xad)proét L (Xad) g X

ét

See [37, section 2.1] for the definition of the morphism at the right-hand side.

The term module always refers to a left module. We view v~1 D as a sheaf of k-ind-
Banach algebras and v~ as a sheaf of v~ D-ind-Banach modules, cf. Lemma B.1.6.
This makes v~ O®y, ]B%Il’;: av! ﬁ@ko ng-module object. Since ]B%L’g is commutative,
it is in fact a v~! ﬁ—Bg’g—bimodule object, cf. Definition A.0.3.

Theorem 4.2.1. There exists a v} ﬁ-Eg’g-bimodule structure on OIB%L’}—{ such that

the canonical morphism

v 0@y, Bl — OBl (4.2.1)
is a morphism of v1 5—BL§-bim0dule objects. It is unique.
Remark 4.2.2. Here is an overview of the proof of Theorem 4.2.1. We give a lo-
cal construction of the bimodule action. Assume that X is affinoid and equipped

with an étale morphism X — T¢ We have the elements y,...,0; € 73(X) Cf.
Theorem 3.5.5, OIBS’;{ has the sections 71, ..., Zy, locally on the proétale site.

d
@--Zl'

=iz, (Z1) = 0

defines the action of v~! 73, where dj; is the Kronecker delta. A large part of the
proof concerns showing that this action is compatible with the canonical ]B%Z{g—module

structure. Finally, we use that (4.2.1) is an epimorphism to show uniqueness.

Proof of Theorem 4.2.1. Corollary A.0.4 and the Lemma 4.2.3 imply uniqueness.
Lemma 4.2.3. The morphism (4.2.1) is an epimorphism.
Proof. For every q e N, U = “ piniel "U; € Xproet, and @ € 1,

ker O@inf>

O+ (Ul) @W(K)AgR(U) — (O+ (Uz) @W(H)Alnf(U)> < pq
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has dense image. It is an epimorphism by Lemma 2.1.7(ii).
“lim O (U;) @k, Bl (U) — OBl (U)
il

is an epimorphism because colimits preserve epimorphisms. Now sheafify and apply
Lemma B.1.3(iii) and B.1.5, to find that (4.2.1) is an epimorphism. O

It remains to construct the bimodule structure. We may work locally, as the
uniqueness of the bimodule structures ensures they will glue. Therefore, we can
assume that X is affinoid and equipped with an étale morphism ¢g: X — T

X — X is the pro-étale covering as in Theorem 3.5.5. Let U € Xproét/i. One can
assume that U is affinoid perfectoid by Lemma 3.2.6. We aim to give OB;! (U) the
structure of a v=* ﬁ(U )-Blt (U)-bimodule object, functorially in U. This is equivalent
to giving OIB%L’I;f (U) the structure of a ﬁ(V)—BL’f{(U )-bimodule object for every V €
X, with U — v~ (V), functorial in U and V. By Corollary 3.5.7,

OBl () = Bl () (2227 "2 iy (0) (2222 Bk
qeN

Apply Lemma 4.1.7 to get

—_

D(V) = lim D,, (V) = lim U (B &4 L,) @ k

r>Tg r>Tg
232 236 —
= lmU(B®aL:)[1/p] = lim U (B®aL)wwko.
r>rg r>rg

A is an affine formal model in O(X), £ = @ld:l A0, where 0, denotes the lift of
the canonical vector field d/dT; along the étale map g#: O (Td) =k <T1i, e ,Tdi> —
O (X), L, :=p"L, and B is an L,-stable affine formal model in O(V'). Assume that
r is sufficiently large, such that V' C X is L,-admissible. This is possible by [7,
section 6.1, Lemma (b)]. We construct U (B ®4 £,)-Alg (U)-bimodule structures on

Condition 4.2.4.

(i) For all 7" > r, the following diagrams commute:

T |

(T i) B0 ) — i) {(B5)

Here, the horizontal maps denote the bimodule structures.
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(ii) For all ¢ > ¢, the following diagrams commute:

W (k) —— Al (U) (D)

Here, the horizontal maps denote the unit maps.

Once these bimodule structures are constructed, invert p to get a Dy, (V) —

Condition 4.2.4, giving the desired ﬁ(V)—]BZ{;{(U )-bimodule structure on OB} ().
Simplify notation: O := O(V)°, L, := B®a L,, A? := Al (U), and OA? :=

structure on OA9. This is equivalent to giving a morphism

—

U (L,) — Hom ,, (OA?, 0A%) (4.2.2)

of W(k)-Banach algebras. We also explained that the morphism has to be suitably
functorial in V' and U. This will be obvious from the construction. Thus we choose
to omit both U and V in the simplified notation.

View L, together with the canonical anchor map o: L, — Dergo (O) as a (k°, O)-
Lie-algebra, cf. [7, section 2.1]. We construct (4.2.2) via the universal property of the
completed enveloping algebra. Without loss of generality, ¢ € N>;. Write

jO: 0 — I—Io_m,4q (OAq7OAq)>
fr(h=e(f)h),

where € denotes the map constructed in Lemma 3.6.1, but we omit the index 7. Indeed,
the image of € lies in Ay, (R, RY) [Z1, ..., Za] € OA? because ¢ > 1. Next,

er: LT‘ - Ho_mAq (OAQ’ OAQ) )
d d d
T’a -~ T
IE:1 Jip" O ;:1 c(fi)p iz

is well-defined because ¢ < r. Indeed, compute for every [ = 1,...,d and o € N,

o () =z () )

r 7 a;—1 7 a—aqe;
() () cor
pq p(‘I*l) pq
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where ¢, = (0,...,1,...,0) denotes the [th unit vector. Then one shows directly
that jr, (p"0,) defines a bounded linear map OAY — OA?. To exploit the universal
property of U (L,), the following has to be checked:

Condition 4.2.5.
(a) jo is a homomorphism of k°-algebras.
(b) jr, is an O-Lie algebra homomorphism.
() Forall f €0 and P € L. ji, (fP) = jo (f) ju (P).
(d) For all £ € 0 and P € Ly, [jr, (P), jo(/)] = jo (0(P)(f)).
By [7, section 2.1], this would indeed give a continuous map
U (L) — Hom,, (0A7, 0A7)

of W (k)-algebras. It would extend by continuity to the desired morphism (4.2.2).
Conditions 4.2.5 (a) and (c) are obvious. It remains to check (b) and (c).

Lemma 4.2.6. A bounded W (k)-linear derivation D: O — OA? is a bounded W (k)-
linear map which satisfies the Leibniz rule. If D|O(1rd)° =0, then D = 0.

Proof. Equip both OA? and O = O(V)° with the p-adic norms. D is still continuous
because it is W (k)-linear. Recall Lemma 2.3.6. The following is a bounded derivation

between two k-Banach spaces:
D[1/p]: O(V) — OA*[1/p].
By [31, section 3.6, page 64], it is identified with a bounded linear map
Qo) — OA[1/p]. (4.2.3)
Loc. cit. identifies the composition of (4.2.3) and QO(’H‘d)/k = Qovy/k With
D{L/pllo(rey = Dlo(ray[1/p] = 0.
Therefore (4.2.3) is the zero map and so is D[1/p]. D = 0 follows. O

Lemma 4.2.7. The following diagram commutes:

Hom ,, (OA9, OAY)

L, —————— Homy,, (0, 0A7).

P—¢oo(P) —
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Proof of Lemma 4.2.7. Fix P € L,. Both jj,_ (P)o€and €oo(P) are bounded W (k)-

linear derivations. Because of Lemma 4.2.6, it suffices to check
(€0 a(P)lo(r,,)° = Jr. (P) o, )

Fix the O-basis p"04,...,p" 04 for L, and write P = Z?:l fip"0; with f; € O. Both
(€oo(—)) |O(Tk0)° and jr, (—) |O('J1‘k0)° are O-linear, thus it suffices to check

(€0 0(p'0)) lo(r, ) = Jr (P"0) lo(n,,)"

for every [ =1,...,d. Fix such an [. Now computing
(€0a(p™d)) (T;) = jr, (p"0) (o (T})) (4.2.4)
for every j = 1,...,d suffices. This is a direct computation:

Fo 0w a)) (1) =7 (' 2 (1)) = 1",

where 0;; denotes the Kronecker delta, and
i 0) E(1) =92 ([12] +2) =975,
1

The last step uses that [T;] € A9 is a constant and d/dZ; is an A%linear derivation.
This gives the identity 4.2.4, and thus finishes the proof of Lemma 4.2.7. [

We verify Condition 4.2.5(b) in the following.

Lemma 4.2.8. The morphism jp. is an O-Lie algebra homomorphism.

Proof. jp, is k°-linear. It remains to show that it preserves the Lie bracket:

2, (P), L Q)] = ju. ([P, Q) , (4.2.5)

for any P, () € L,. For all j =1,...,d, it suffices to check

. (P), 41, (@)1 (Z;) = jr, ([P, Q)) (%))

because both sides are derivations. But then we would have to compute

e, (P), jr. (@) o € = jr, ([P, Q]) o € (4.2.6)
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Indeed, if (4.2.6) is true, we could compute

. (P), i (@) (Z)) = ljr, (P). 4. (Q)) ([T2] + 2))
— (1. (P), j1.(Q)] 0 &) (T})

K
(““)( <[ Q) o) (T))

Q) (|17] +2)
- T<[ Q) (7).

In particular, (4.2.6) implies (4.2.5). The following computation

UL ( ), Jr. (@) o€

( )OJL( ) = jr.(Q) o jr,(P)) o€
)AJ)_]L() (Jr,(P)o€)

o€ o€)oo(P)

(P))OU(Q) (GOU(Q) o(P)

(0(P)oa(Q) —o(Q)oo(P))

o~
o

e e e !
. /\

=

/\

S
~

=~
3

I
™ ™
o o
3 9 °
v
Q (@]
=< 9
L —
=9

~
[t
9 M

I
!
@)
3 Q

checks (4.2.6).

We verify Condition 4.2.5(d) in the following.
Lemma 4.2.9. For all f € O and P € L,, [ji,(P),jo(f)] = jo (¢(P)(f)).

Proof. Write P = 27:1 fip"0,. Compute for every h € OA?and [ =1, ..., d,
d d
Jo (fl)prd—Zl,jO(f)] (h) = jo (fi) [pTd_Zl’jO (f)} (h)
- d .
= 2() (2 @) ) 1
d ~
= (Jo (s ) @)

This establishes the identity at the left-hand side here:

i, (P). jo(£)] () = (ji, (P) 0 &) ()b "Z" (€0 a(P)) (f)h = jo (a(P)(f)) .

The identity at the right-hand side comes from the definition of jo.
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We have thus verified Condition 4.2.5. This gives the morphism (4.2.2) and
thus the U (B ®4 L,)-Alg (U)-bimodule structure on Aly (U) <¥> Invert p via
—®w () ko. Lemma A.0.7 applies because Condition 4.2.4 is satisfied, giving the de-
sired ﬁ(V)—]RS’;{(U )-bimodule structure on OB (7). It is functorial in both V and
U, giving OBQ’Q the structure of a ! 5—1833’;{ -bimodule object.

We discussed above that uniqueness is immediate once we have checked that the
canonical morphism (4.2.1) is a morphism of sheaves of v~ ! 73—[833}'{ -bimodule objects.

Given V and U as above, we may check that
O(V)®x, Bl (U) — OBl (U) (4.2.7)

is a morphism of 73(‘/)—18311’}'{ (U)-bimodule objects. It is obtained by considering

Zl,...,Zd>

- (4.2.8)

B@W(K)Agm (U) - A?iR (U) <

inverting p, and sheafification. By Lemma B.1.5, it suffices to check that (4.2.8) is a
morphism of m)—AgR (U)-bimodule objects.

It is Al (U)-linear, and the actions of U/(M) on both the domain and
codomain of (4.2.8) are B-linear. Thus it remains to compare the actions of the
differentials p" 1, ..., p"d;. But we have étale coordinates on O(V'), and it suffices to

compare the actions on these. First, compute for all T; € O(V),
PO - T =poy.
Second, the map (4.2.8) sends T to [17] 4 Z;. Cf. the proof of Lemma 4.2.7:

p o - ([Tﬂ + Zj) =p"dy;.

Thus (4.2.8) is a morphism of U (B ®4 L,)-Alg (U)-bimodules. O

Corollary 4.2.10. There exists a v ﬁ—BLR—bimodule structure on O]B%LR such that

the canonical morphism
v 1Oy, Bl — OBl (4.2.9)

is a morphism of v—! 5—]BSLR—bim0dule objects. It is unique.

Proof of Corollary 4.2.10. The bimodule structure on OIB%ZIR is obtained by taking
the bimodule structure on (’)IB%I{;{ as in Theorem 4.2.1 and inverting ¢, locally on the
pro-étale site. Regarding uniqueness, note that the canonical morphism (4.2.9) is
an epimorphism. This follows from Lemma 4.2.3 and because the completed tensor

product preserves epimorphisms. Thus Corollary A.0.4 applies. O]
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4.3 A Poincaré Lemma

X still denotes a smooth rigid-analytic k-variety. We construct a Bgﬁr—linear connec-

tion on OIB%:;’Q, coming from its v~} ﬁ—Bg’g-bimodule structure.

Remark 4.3.1. Similarly, we may construct a ]B%LR—Iinear connection on (’)IB%ER coming
from its 1 ﬁ—BLR—bimodule structure. The discussion here in Subsection 4.3 goes

through verbatim. This includes the formulation and proof of Theorem 4.3.8.

Definition 4.3.2. By [7, section 9.1, Proposition], there is a coherent sheaf 7 on X
with 7(U) = Der, O(U) for every affinoid subdomain U C X: the tangent sheaf. Its
sections are k-Banach spaces. In particular, the restrictionf of 7 to the site X, of
affinoid subdomains of X equipped with the weak Grothendieck topology is a sheaf of
Banach spaces by Lemma 2.6.1 and the open mapping theorem. Apply Lemma 2.6.2
to view it as a sheaf of k-ind-Banach spaces on X,,. In fact, it is by construction a
sheaf of O¥-ind-Banach modules.

Definition 4.3.3. We define the following map V:ri’}_{: OIB%L’}—{ — OIB%:;’}'{ ®,-1v1Q! of
sheaves of IB%S’P'{ -ind-Banach modules. The v~! 5—B$§—bimodule structure on (’)IB%S’;{

from Theorem 4.2.1 gives a morphism
-1y T+ T+
v D — HO%LQ (OIBdR , OBdR)

of sheaves of ky-ind-Banach algebras. The proof of loc. cit. actually implies that this

morphism is v~ 1O-linear. Thus it lifts to a morphism
-1y T+ T+ Tt
v DEy10 OBl — Homy. (OBl OBl )

of sheaves of Ong—ind—Banach algebras; here, the left-hand side becomes a monoid

object through Lemma A.0.2. Compose it with the canonical map

v I T®, 10 OIBSS’;{ — v ' DRy 10 OBE’TI .
to obtain

v T80 OBl — Homy: . (OBl OBl ).
Its dual appears in the following composition:
OBl — Homey. (Homy:. (OB, OBl ) , OBl )

— Homegy (V' 7,10 OBl , OB )

= Hom, 1o (v~'T, OBly;)

~ OBl B, 1ov 101,

This is Vi
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Remark 4.3.4. Definition 4.3.3 is inspired by the procedure that relates D-module

structures to connections in the classical theory.

Lemma 4.3.5. VS’;{ fits into the commutative diagram

—
OBl R OB &, 100710
v lo Y, v 10,1001
of sheaves of k-ind-Banach spaces.

Proof. v10 — O]B%LR is ! D-linear by Theorem 4.2.1. ]

Lemma 4.3.6. Assume that X is affinoid and equipped with an étale morphism
X — T9  The étale map X — T¢ furnishes an isomorphism Q' = @le OdT;.

Together with Corollary 3.5.7, this gives the vertical morphisms in the diagrams

T+
OB (U) —— = ! OBl (U)dT

4 4 (4.3.1)

for every affinoid perfectoid U € Xpmét/)?; d> denotes the colimit of the differentials

7
dq. k’o <T> — Qk0<21;’dyzd>/k0

along ¢ — oco. These diagrams 4.53.1 commute.
Proof. Firstly, we clarify the definition of the diagram (4.3.1):

e The codomain of VL’;{(U ) is indeed

d
P OBl (U)dT = OBY: (U)8,-10w)v QN U) = (OBl @,-10071Q1) (U).

e The vertical morphism at the left of (4.3.1) comes directly from Corollary 3.5.7
and Lemma 2.4.7.

e The vertical morphism at the right-hand side is the composition

Ziooo 0 Za\
ng(U)%Q ,,,,, = @ (ng U) @, ko <1Tﬂ>> =~ OB (),

where the morphism in the right comes again from Corollary 3.5.7 and Lemma 2.4.7.
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VL’;C (U) is, by the definition of ind-completions, the colimit of bounded maps

d

,/, , Zl,,Zd /7 Zl)azd
Vi ) B ) () @) (B ar
=1

e

along pairs of natural numbers ¢ < ¢’. These ng{*(U ) are connections in the
following sense: Firstly, they are, by definition, B4 (U)-linear. Secondly, they satisfy
the Leibniz rule because the sections of T satisfy the Leibniz rule. Lastly, they vanish

on BY(U): By definition, Vg§/’+ sends a section b € B% (U) to the morphism

localisation of X¢. But this morphism is zero, again because the sections of T are
derivations, that is P(1) = 0.

Thus, to show the commutativity of the diagram (4.3.1), it remains to compute
Vgﬁl’Jr(U) (Z;) for all i = 1,...,d. This follows from Definition 4.3.3, using that
{dT;},_, ,is the O(U)-basis of QY(U) dual to {0;},_, O

777777777

Lemma 4.3.7. For every ¢ > 0, there is a unique morphism
Vi OB, @, 10070 — OB, @, 100 10!
of sheaves of Bix-ind-Banach modules satisfying

v;ﬁi(fdwl/\"'/\dwz‘)ZVIR(f)/\dwl/\---/\dwi

for local sections f € OB, and w € v='Q%. In particular, Vi3 = Vis and Vi o

Vid =0 foralli>0.

Proof. Thanks to Lemma 4.3.6, we can proceed as in the classical situation, cf. for
example [59, Tag OFKF]. O

Theorem 4.3.8 (Poincaré Lemma). Lemma 4.3.7 gives rise to the de Rham complex

+ Vir + = 101 Vi Vit + = 1d
0 — OB — OB @p-10v Q4 — -+ == OB ®,-10v Q% = 0.

where d := dim X . [t is strictly exact everywhere, except in degree zero: Here
B, — ker Vi,

is an isomorphism of sheaves of Bl -ind-Banach algebras.
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Proof. We may assume that X is affinoid and equipped with an étale morphism

X — T9 giving rise to the pro-étale covering X — X. We have to check that

0 — Bl (U) — OB (U) — OBy (U) @,-10@r Q! (U)
— . — OB (U) @10y QT (U) — 0 (4.3.2)

is strictly exact for every affinoid perfectoid U € Xpos /i , cf. Lemma B.1.3(iii).
Corollary 3.5.7 and Lemma 4.3.6 imply that the complex (4.3.2) is isomorphic to

lim BY (U) @, (0 — ko — AT — Qlyy ) — = Uy, — 0). (4.3.3)

geN

where A7 := k <Zl """ Zd>. The complexes at the right-hand side, that is

pq

0— ky— A? — Q}L‘q/ko — e — Qiq/ko — 0, (4.3.4)

are by Lemma 4.3.6 the concatenations of the maps ky — A? with the de Rham
complexes of the affinoid algebras A,. (4.3.4) is not exact, but the colimit

h_r>n<0—>k0—>Aq—>Qi‘q/kO — —>Qfl4q/k0 —>O>

qeN
is strictly exact: this follows because the underlying complex of abstract kg-vector
spaces is exact by [15, remark following the proof of Corollary 1.3.3], thus the complex
of complete bornological spaces is strictly exact by a version of the open mapping
theorem, see [8, Theorem 4.9]. Apply Lemma 2.2.12 to see that the complex is
strictly exact as a complex of k-ind-Banach spaces. Since B4 (U )@k, — is exact, cf.
Corollary 2.2.6. This implies that (4.3.3) is strictly exact as well. O
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Chapter 5

Solution and de Rham functors

We use Schneiders’ framework for homological algebra within quasi-abelian categories,
cf. [52, section 1]. Fix the notation introduced in subsection 3.1. X is a smooth rigid-

analytic k-variety of dimension dim X.

5.1 Solution and de Rham functors for D-modules

Equip (’)IB%ZI’;{ with the v~} 73—1833’135 bimodule structure from Theorem 4.2.1.

op

Sol: D(D)” — D (B ).
M* — RHom, .5 (1/_1/\/1', OIB%L’;C)
is the positive solution functor.
Remark 5.1.1. v~ is strongly exact by [18, the discussion following Lemma 2.26].

We refer to [18, subsection 5.2] for the definition of the duality functor
D: D (D) —D(D)”.
Following the classical [35, Proposition 4.2.1], the positive de Rham functor is
dR": D (D) — D (B ), M* — Sol™ (D (M*)) [dim X]. (5.1.1)
We compute some values of the solution and de Rham functors.

Definition 5.1.2. A sheaf of O-ind-Banach modules is locally finite free if it is,
locally, isomorphic to a finite direct sum of copies of O as a sheaf of O-ind-Banach

modules.
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Definition 5.1.3. Let N denote an O-module with integrable connection Vr. This

induces a connection
Vv 'N®,-10 OBE’;{ — VT IN®,-10 OIBE’;{ ®,-100 Q!
defined by the formula V := (v"'V) ®id +id @VL’;:. We write
V=0
(V_l/\ﬁéfl@ OIB%L’{{) :=ker V.

Proposition 5.1.4. Let M denote a D-ind-Banach module which is locally finite free

as an O-module. Sol™ (M) is concentrated in degree 0 and
H' (Sol* (M) = (v™' D (M) B, 10 OBl ).
We need the following result in order to prove Proposition 5.1.4.
Lemma 5.1.5. The functor —®,-10v D is strongly exact.

Proof. We may work locally to assume that X is a smooth rigid analytic variety
equipped with an étale morphism X — T¢. Fix the notations liinb and @b, cf. the
end of section 2.2. In the following, the first isomorphism comes from [4, Lemma 3.4]
and the fourth isomorphism comes from [18, Corollary 3.40]; see also loc. cit. the
proof of Lemma 4.5.
D(X) = 1lim O&k (' 0y, ..., p"a)
s HmPORk (p"dy, . .., p 04)
e

r
2.

o
-

3

I

R N ;
m " OR, k (p"0y,. .., p"04)
~ A; b r T

= O, Um’k (p"01, ..., p"0u)

T

2213
=~ O@km k <p7"81, o ,prad>
2.2.1

I

1 <
O®k lﬁl k <pralu s 7p7"8d> .

r

To show flatness, we work on the site X" cf. Lemma 3.2.6. Lemma B.1.2

proét,affperfd
then computes the sections of the sheaf

M@V_loyfl D = MEy lin k(p"01,...,p 0a)

T

as follows: they are M(U)@k liLnr k{(p"0i,...,p"04) over any affinoid perfectoid U.
The result thus follows from Lemma 2.2.14. O
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Proof of Proposition 5.1.4. First, we recall [18, Proposition 5.2], which gives a func-
torial isomorphism

D (M) 2 Homy (M, O) . (5.1.2)

Next, S* — O denotes the Spencer resolution, cf. [18, Theorem 4.12]. Loc. cit.
introduces S*® as a complex of sheaves of complete bornological k-vector spaces, and

it establishes the following stronger fact: the complexes
= STAU) — STHU) — S°(U) — OU) — 0

are strictly exact for every affinoid subdomain U C X. Thus Lemma 2.2.12 applies,
showing that S®* — O is a strictly exact complex of sheaves of k-ind-Banach spaces.

We recall the definition: We have S~ = D@ Al T for all i € N, and S~ = 0 for
all © < 0. Here, T denotes the tangent sheaf, cf. Definition 4.3.2. The Spencer reso-
lution is a locally free resolution of D-ind-Banach modules. It is thus a resolution by
strongly flat O-ind-Banach modules, Since v~ is strongly exact, cf. [18, the discussion
following Lemma 2.26], v~1S* — v71O is a locally free solution of v~* D-ind-Banach
modules. Lemma 5.1.5 implies that it is a resolution by strongly flat v~'O-modules.

In the following, we freely use that M is finite locally free as an O-module.

Sol™ (M)

=RHom, .5 (V_IM’ OBS’J)

=RHom, .5 (VﬁlM@i—lofla OBEEF)
(u

71M€8?1/_1OV718., OBE,;{)

]

~ R Hom, .+ (5.1.3)

B.1.

%6 RHom, 5 (yil./\/l@y_ug (Vfl '/D\@,,—1OV71/\. T) ) OIB%Z;’;{)
= RHom, 1 (I/_l,/\/l@,,—l(gl/_l/\. T, O]B(E’g) )

V71M®V—1OV71A. T is a complex of locally finite free v~!O-modules. Thus it com-
putes the R Hom. Now continue with the computation:

Sol* (M)

(5.1.3) L~ e -
= Hom,-1p (u M®y-100" A T,OBd’R) (5.1.4)

(5.1.2)

>~ D (M) @y-10 (OIBagg @Vfloy-lg') .

D (M) is locally finite free as an O-module by (5.1.2). Therefore, v D (M) is
strongly flat as a v~ !O-ind-Banach module. Tt follows from (5.1.4) and Theorem 4.3.8

78



that Sol* (M) is concentrated in degree 0. More precisely,

HY (Sol* (M)
(5}1)4) 0 —1 =~ 4+ = —10e
=" H (v D (M) 8,10 (OBl @p100710°%))
— (V' DM) B, 0 OB)
O

Corollary 5.1.6. Let M denote a D-ind-Banach module which is locally finite free
as an O-module. Then dR* (M) is concentrated in degree —dim X and

H X (dRT (M) = (v MB, 10 OBl ).

Proof. D (M) is again locally finite free as an O-module, cf. [18, Proposition 5.2].
Thus Proposition 5.1.4 applies, showing that dR* (M) is concentrated in degree
—dim X. Furthermore, we see with D* (M) = M, by [18, Theorem 7.17],

- (i (1) — O (S DO
(v D* (M) B0 OBL)
<V71M®y_1(9 OBSQ)VZO :

I

2

[]

Example 5.1.7. dR" (O) is concentrated in degree — dim X, where its cohomology is
isomorphic to ]B%(Tj’g. This follows from Corollary 5.1.6 and a version of Theorem 4.3.8
for OIB%S’; . See also Remark 4.3.1.

5.2 Compatibility with Scholze’s functor I: period
sheaves

We would like to compare our constructions to [54, section 7]. Loc. cit. works with
the de Rham sheaves Bygr, B, OBy, and OBggr; we explain that they carry canonical

algebra structures from their overconvergent counterparts.

5.2.1 Relative period rings

We recall constructions from [54, section 6]. Consider the completion K of an alge-
braic extension of k£ which is perfectoid. Pick a ring of integral elements KT C K
containing k° and fix an affinoid perfectoid (K, K+)-algebra (R, R*). Consider
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Fontaine’s map Oy, : Ajyr (R, RY) — R and invert p to get Yins: Bine (R, RT) — R.

The relative positive de Rham period ring is

Bii (R, RY) :=lim By (R, R") / (ker Vur)” . (5.2.1)

jeN
If K admits a compatible sequence of primitive pth roots of unity e € K?,
Bar (R, R") := B (R, R") [1/1] (5.2.2)

is the relative de Rham period ring. Here, t is as in Definition 3.3.26. We aim to

relate the period rings above to the overconvergent ones.

Notation 5.2.1. A?) (R, RY) is the seminormed W (k)-algebra Ay, (R, RT), equipped

inf

with the p-adic seminorm. It is a Banach algebra by Lemma 3.3.1.

Lemma 5.2.2. AP

inf

(R, R%) / (ker Oye) is complete for every j € N.

Proof. By Lemma 3.3.2, ker 0,y = (§). Lemma 3.3.5(ii) implies
lag’|| = llal (5.2.3)

for all a € AP) (R, R™). We show that the ideal (¢7) is closed. Consider a sequence

inf

(fi€7);en € (&7) which converges to an element h. But then (f;) is Cauchy:

(523) ||fz€] - fi—&-lng — 0 for 1 — o0,

||fz fz—l—l”
and h = lim; . (f;&?) = (lim;_ fi) & € (&) follows. O

Notation 5.2.3. Bmf (R, R™) is the seminormed kg-algebra By, (R, RT) with unit ball
Ay (R, RT). Tt is a Banach algebra by Lemma 3.3.1.

Lemma 5.2.4. IBSmf (R, R") / (ker Os¢)’ is complete for every j € N.

Proof. By Lemma 2.3.6,
Amf (R, R+) Qw (r) ko —>IB%mf (R,R").

By Lemma 2.3.7, which applies because AP (R, RT) does not have p-torsion by

inf

Lemma 3.3.1, the result would follow once

inf

AP (R, RY) <5 AY) (R, RY) (5.2.4)

is a strict monomorphism. It is injective by Lemma 3.3.2, has closed image by
Lemma 5.2.2 and is open onto its image because ||a¢|| = ||a| for every a € Amf (R,RY),

cf. Lemma 3.3.5(ii). (5.2.4) is thus a strict monomorphism by Lemma 2.1.7(iii). O
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Aiyr (R, RY) still carries the (p, &)-adic topology. Consider
A (R, RT) — AY) (R, R") / (ker fing) .
It map is a morphism of W (k)-Banach algebras by Lemma 2.1.3. It lifts to a morphism
Bl (R, R*) — BY) (R, RY) / (ker Oing)’
of kop-Banach algebras for every ¢ € N. Now compute the inverse limit along j to get

B (R, RT)|— Bar (R, R7),

where | — | refers to the underlying abstract ring, cf. (2.2.1). Finally, we get the

following morphism of kg-algebras:

|Biy (R.RY) | =1lim|B% (R.R")| — Bl (R,R").

geN

Similarly, Bag (R, R") is canonically a | Bl (R, R") |[-algebra via

| Bl (R, R7)| = limlim | By (R, RY)| — lim B, (R, R") = Bug (R, R").
tx

tx q€eN

5.2.2 Period sheaves

We refer the reader to [54, Definition 6.1] for the definition of the sheaf B on X
By loc. cit. Theorem 6.5(ii), its sections over an affinoid perfectoid affinoid perfectoid

U € Xpros With U= Spa (R, R™) are
Bir(U) = Br (R’ R+) :
Recall Definition 2.6.3. Lemma 2.6.4 and Theorem 3.4.2 give
|Bin |(U) = | Bl (R.R7)|.
From the discussion in subsection 5.2.1, we find a morphism of sheaves
Bl 118 s — Bk X8

of kp-algebras. Apply Lemma 3.2.6 to extend it to

|BI1§ | — IBIR;
which is a morphism of sheaves of kg-algebras on Xp,0¢. Similarly, one finds

|B£R | — Byg,

a canonical morphism of sheaves of ky-algebras on Xp¢.
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5.2.3 Period structure sheaves

Notation 5.2.5. For any two W (k)-algebras R and S, R®W(,€ S is the p-adic comple-
tion of R @,y S. We equip it with the p-adic seminorm.

Recall the following definition from [55].

Definition 5.2.6. OB}; is the sheafification of the presheaf
OBL™: U = “lin U > lim lim (O (U Aune (1)) [1/p] / (kex Obhoe)?
iel i>ig jEN

of abstract k-algebras on Xp,0¢. Here, Oy denotes the map

Ob;.¢ has been defined at the beginning of section 3.5.

In this subsection, we construct of a canonical morphism | OIB%E’;{ | — OB

Note that Oi,¢: Bins — O extends canonically to a morphism 6y : IB%:{R NG)

Notation 5.2.7. Let U be an affinoid perfectoid with U = Spa (R,R*). Then

(Bir(U)/ ((ker Yar)’)) 121, Zal/ (24, Za)’
= (P (BE (R.R*) / ((ker vhur)’ ) ) 2°

aEN‘%
laf<y

is viewed as a Banach space with the coproduct norm, cf. Lemma 5.2.4.

Lemma 5.2.8. Assume that X is affinoid and equipped with an étale morphism X —
T?. LetU € Xproat be affinoid perfectoid. Fiz a pro-étale presentation U = 7 li_I)nieI "U;
and fix ig € I as in Notation 3.5.4. Let v > ig be arbitrary. Then

(Bin(0)/ ((kerVar)’)) [21,- ... Zd/ (21, Za)’

~

= (O VDB b)) [1/2] / (her OB

given by Z; — w, cf. (3.5.1), are isomorphisms of seminormed k-vector spaces for

every j € N. In particular, the right-hand sides are k-Banach spaces.

Proof. See the [54, proof of Proposition 6.10] for the construction of the inverse map.
One checks that it is bounded. Thus [54] implies that it is not merely an isomorphism

of abstract vector spaces, but an isomorphism of seminormed vector spaces. O
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We continue to assume that X is affinoid and equipped with an étale morphism
X - T Let U = “lim”erU; € Xproer be affinoid perfectoid. O+(Ui)@W(K)Ainf(U)
carries the (p, £)-adic topology. Consider

O (U)o Ain (U) — (O*(Ui)@(vﬁ)(ﬁ)Ainf(UD 1/p] / (ker i), (5.2.5)

where the codomain carries the quotient seminorm. We find with Lemma 5.2.8 that

the morphism (5.2.8) lifts to a morphism
| OB ™" (U) | — OB (U)
after taking the colimit along ¢ € I. By the Remark 3.5.8, this gives
| OB (U) | — OB (U).
Lemma 2.6.4 implies that we have constructed a morphism

‘ OEL’PJ{ Hxﬁ“ - OB:fR ‘Xﬁn

proét,affperfd proét,affperfd

of sheaves of abstract k-algebras. Apply Lemma 3.2.6 to get
| OB:&Q | — OBg;

it is by construction a canonical morphism of sheaves of k-algebras. That is, OBl
is canonically a sheaf of | OIB%Q’;{ |-algebras. We observe that this algebra structure is
compatible with the v~*O-module structure. In particular, the vertical morphism at
the right-hand side of the diagram (5.2.6) is well-defined.

Lemma 5.2.9. Recall the Definition 4.5.3 of Vil’;{. The Bl -linear connection Vi,

has been defined in [54, section 6]; it fits into the commutative diagram

+
VdR

OB(J{R > OBCTR ®u*1(9]/7191
T (5.2.6)

Vi
| OB | — | OBl ®,-10071QY = | OBl | ®,-1j0) v [Q1].

Proof. This is clear from Lemma 4.3.6 and the definition of V5. [

Finally, we recall that the sheaf OBqg is obtained from OBZ; by inverting ¢, locally
on the pro-étale site, cf. [54, Definition 6.1(iv)]. The algebra structure | OBL | —

OB, thus induces a canonical | OIB%LR |-algebra structure on OBgg.
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5.3 Compatibility with Scholze’s functor II: con-
jecture

Definition 5.3.1. [54, Definition 7.4] A filtered O-module with integrable connection
is a locally free O-module £ on X, together with a separated and exhaustive decreasing
filtration Fil" £ by locally direct summands, and an integrable connection V satisfying
Griffiths transversality with respect to the filtration, that is 7 - Fil* £ C Fil"~' £ for
all n € Z. Here, T denotes the tangent sheaf, cf. Definition 4.3.2.

See [54, Definition 6.8] for the definition of the descending filtration on OBgg;
its zeroth filtered piece is OBjy. Loc. cit. also constructs a Bggr-linear connection
Var: OBgr — OBgr ®,-10v Q. Now Scholze’s functor [54, Theorem 7.6] is

{ filtered O-modules

with integrable connection

} . Mod (Bjy) 5o

& Fil’ (V'€ @10 OBag) ¥ "

We would like to compare Scholze’s functor (5.3.1) to the positive de Rham func-

tor 5.1.1 First, we compare their domains.
Lemma 5.3.2. Consider an O-module £ with integrable connection.

(i) Equipped with the trivial filtration, £ is a filtered O-module with integrable con-

nection in the sense of Definition 5.53.1.

(ii) E is canonically a sheaf of D-ind-Banach modules.

Proof. The trivial filtration is Fil" € := & for n < 0 and Fil" € = 0 otherwise. (i)
is obvious. (ii) follows from [6, Theorem BJ: loc. cit. allows to view £ as a sheaf of
abstract ﬁ—modules, it is thus canonically a sheaf of complete bornological D-modules
by [18, Theorem 4.4]. One deduces from Lemma 2.2.12 that they are sheaves of k-ind-
Banach spaces, thus they are sheaves of D-ind-Banach modules by Lemma 2.2.13. [

Fix an O-module £ with integrable connection. View it as a filtered O-module
with integrable connection via Lemma 5.3.2(i). Scholze’s functor (5.3.1) sends it to a
sheaf £ of Bjz-modules. Because & carries the trivial filtration,

L= Fllo (V715 Ry-10 OBdR)VZO

= (V'€ @10 OBY)

On the other hand, £ is a complex of complete bornological D-modules concentrated

in degree zero, cf. Lemma 5.3.2(ii). Compute
: ,\ V=0 V=0
[H- 4 X (AR (£)) [ = | (v '€B,-10 OBy ) | = (v '€ @10 | OBl |)
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with Corollary 5.1.6. Note that the tensor product at the right-hand side does not
have to be completed because v~ 1€ is a locally finite free sheaf of v~'O-modules.

Now we find with Lemma 5.2.9 that there is a canonical morphism
|H—dimX (dR+ (5)) | L
of sheaves of |BL’;{ |-modules. In particular, it factors through a morphism
|[H™ 4™ X (dR™* (€)) | By pit | Bl — L (5.3.2)
of sheaves of Blz-modules.

Conjecture 5.3.3. This morphism (5.3.2) is an isomorphism for any O-module with

integrable connection &.
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Appendix A

Closed symmetric monoidal
categories

Consider a closed symmetric monoidal category (C, 1, ®).

Lemma A.0.1. Let R € C denote a monoid and M an R-module object. Fix an
epimorphism ¢: M — N. If there exists an R-module structure on N making ¢

R-linear, then this structure is unique.

Proof. Consider two R-module structures on N with actions ay;: R®@ N — N,
respectively ay o, and units 1y;: R — N, respectively 1y,. We assume that ¢ is
R-linear with respect to both R-module structures on N.

Denote the action of R on M by ap;: R® M — M. The ¢-linearities imply

aN,l (@) (ldR ®¢) = gb (@] aM, and aN72 O (ldR ®¢) = gb o an .

But idg ®¢ is an epimorphism because C is closed; ay; = ay 2 follows.

Furthermore, the ¢-linearities imply 1x1 = ¢ o 1y = 1y . O
The following lemma is well-known, thus we omit the proof.

Lemma A.0.2. Let R, S denote two monoids in C Then R® S becomes a monoid

as follows. The multiplication is the composition
(RRS)®(R®S)2(RIR)®(S®S) " Re S
and the unit 1s the composition
1~191"%% Re s,

Here p, is the multiplication and 1, is the unit of x € {R, S}.
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Definition A.0.3. Let R and S denote two monoid objects in C. An R-S-bimodule
object M is an R ® S°P-module object. Here, the underlying C-objects of S and S°P
coincide, but the multiplication is performed in the reverse order.

A morphism between two R-S-bimodule objects is R-S-linear if it is a morphism
of R ® S°P-module objects.

The following corollary is a special case of Lemma A.0.1.

Corollary A.0.4. Let R, S € C denote monoids. M is an R-S-bimodule object. Fix
an epimorphism ¢: M — N. If there exists an R-S-bimodule structure on N making

¢ R-S-linear, then this structure is unique.
The following two lemma are easy to verify; we leave the details to the reader.

Lemma A.0.5. Suppose C admits all limits. Consider the tower of monoids
- — Ry — Ry — Ro;
here, the maps are multiplicative. Then R := @TGN R becomes a monoid object:

R® R — lim (R, ® R,) — lim R, = R

reN reN

18 the multiplication and the unit is

1=1liml —limR, = R.
“— —
reN reN

Lemma A.0.6. Suppose C admits all colimits. Consider the tower of monoids
SV — St 82
here, the maps are multiplicative. Then = li_rr>1qu S? becomes a monoid object:

S® S8 =lim ($7® 57 — limS? =5
q€eN geN
1s the multiplication and the unit is
1=Ilml—1limS?=S.
— —
qeN qeN

We utilise Lemma A.0.7 in the proofs of Theorem 4.2.1 and Corollary 4.2.10.
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Lemma A.0.7. Suppose C admits all limits and colimits and consider the towers
- — Ry — Ry — Ry, and
SO - 8t 5%
of monoids; here, the maps are multiplicative. Let
M — MY — M?* — ..

denote a tower of objects in C. We further have R,.-S1-bimodule structures on M4
for all r < q such that

(i) the following diagrams commute for all ' > r:

(R, ® S4°P) @ M7 —— M4

T |

(R ® ST°P) @ M1 —— MY1.
Here, the horizontal maps denote the bimodule actions. Furthermore,
(i) the following diagrams commute for all ¢ > q:

1 —— M7

|1

1 —— M9

Here, the horizontal maps denote the unit maps.

Apply Lemma A.0.5 and A.0.6 to turn both R :=1lim R, and S = lim __SY into
<——reN —qeN
monotds. Then the composition

(R®SP) @M =lim (R® S"P) @ M1

qeN

qeN r>q

— limlim (R, ® $7°°) © M
qeN r>q

@ Yim M
_)
qeN

=M

defines an R-S-bimodule action on M := 111_)nq6N M9, The unit 1 — M is the colimit
of the units 1 — M?Y; this is well-defined by (ii).
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Proof. We denote multiplication maps by x4 and module actions by a. Consider

i (R, ® Sq,op) ® ) . '
fim, ., ( (R, ® §7°P) @ MY > im, (R @ 597) ® M)

R o s . /

o (Ro 1) g ap — o (RO ST @ M0

\Lz@id \[ﬂ

(R® 59P) @ M1 ——2 % JJa

1 / \ U
lim (R, ® 57°7) @ M) Mo

7

(A.0.1)
for every ¢ € N. The diagram is commutative: this is obvious for all rectangles except
the middle one. However, the commutativity of the middle rectangle follows from the
commutativity of the others. Now consider again the square in the middle of (A.0.1)

and pass to the colimit along ¢ — oo to get the commutative diagram

(R® S°P) ®@ (R ® S9°P) @ M1 d®a, (R® S*°P) @ M1

lu@id la

(R® S7°P) @ M1 ! y M1

It remains to check that the R-S-bimodule action preserves the unit map. For every

q € N, consider the diagram
héna?q (Fr ® 5%°°)

_——

1® M4 » (M ® S9) @ M9 (A.0.2)

The diagram is commutative: this is obvious for all triangles except the one in the
bottom left corner. However, the commutativity of the triangle follows from the
commutativity of the others. Now consider again the triangle in the bottom left

corner of (A.0.2) and pass to the colimit along ¢ — oo to get the diagram

1® M1 > (M ® S9) @ M1

~

M2

)

which is commutative. That is, the R-S-bimodule action preserves the unit map. [
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Appendix B

Sheaves valued in quasi-abelian
categories

We assume the reader is familiar with quasi-abelian categories as developed by Schnei-
ders [52]. We primarily cite [18], which works with sheaves on G-topological spaces,
rather than topological spaces. This is still not the needed level of generality, but
the discussions loc. cit. generalise to our setting. We prove a folklore result in

subsection B.2 which we couldn’t find in the literature.

B.1 Categories of sheaves

Fix a site X and a quasi-abelian category E.

Definition B.1.1. An E-presheaf or presheaf with values in E is a functor
F: XP - E.

An E-sheaf or sheaf with values in E is an E-presheaf F such that for any open
U € X and any covering 4 of U,

e the products [y, F(V) and [ [y e F (W xp W) exist, and
¢ 0= FU) = [lyea F(V) = [wwrey F (W xy W) is strictly exact.

Lemma B.1.2. Suppose that X admits only finite coverings and consider a strongly
left exact functor F: E; — Ey between two quasi-abelian categories which admit all
finite products. Then for any E;-sheaf F, F oF is a Ey-sheaf.

Proof. This is because F commutes with finite products, cf. [52, Remark 1.1.13]. O
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From now on, E is elementary.

The morphisms in the category of presheaves Psh(X, E) are the natural trans-
formations. The category of sheaves Sh(X, E) is the corresponding full subcategory.
As in the classical theory, the inclusion Psh(X,E) < Sh(X,E) has a left adjoint
F — JFh. This is sheafification, cf. [18, the beginning of subsection 2.3].

Lemma B.1.3. The categories of presheaves and sheaves are well-behaved:
(i) Psh(X,E) and Sh(X,E) are quasi-abelian categories.

(ii) Psh(X,E) and Sh(X,E) are complete and cocomplete. Limits in Sh(X,E) are
the same as limits in Psh(X,E) and a colimit in Sh(X,E) is the sheafification
of the colimit in Psh(X,E).

(11i) Sheafification is strongly exact.

Now assume that E is closed symmetric monoidal with unit 1 € E and tensor
product ®. This gives a symmetric monoidal structure on Sh(X, E) as follows. 1y is

the constant sheaf on X. Next, define for any two presheaves F and G a presheaf
F®Rpsn G: U= FU)®GU).
If 7 and G are sheaves, F @ G := (F ®psh G)™. This gives a bifunctor
—® —: Sh(X,E) x Sh(X,E) — Sh(X,E).
Lemma B.1.4 ([18, Lemma 2.15]). (Sh(X,E), 1x,®) is closed symmetric monoidal.

We use the following fact without further reference: A monoid structure on an
E-sheaf R is equivalent to the data of a monoid structure on the sections of R such
that the restriction maps R(U) — R(V) are multiplicative. Similarly, the structure
which makes an E-sheaf an R-module object is equivalent to section-wise module

structures which commute with the restriction maps in the obvious way.

Lemma B.1.5. (F ®psn Q)Sh = Fh @ G is an isomorphism for any two E-
presheaves F and G on X. That is sheafification is strongly monoidal.

Proof. See [18, Lemma 2.16]. O
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We keep our assumptions on E fixed and consider a morphism f: X — Y of sites,

which is given by a functor f~1: Y — X between the underlying categories.

fPt Psh (Y, E) — Psh (X, E)

TN F)U) =l F(V)
U—f=1(V)

is the presheaf inverse image. The direct image functor is

f+: Psh(X,E) — Psh(Y,E)
fo(F)(U) = F (f71(V)),

as discussed in [18, section 2.6]. f. sends sheaves to sheaves but fP*®~! does, in

general, not. This is why we define the direct image functor f=! := sho fpsh—=1,

Lemma B.1.6. There is a natural isomorphism f~ (F @ G) = f~'F® f~1G for any
two E-sheaves F and G on X. That is, f~! is strongly monoidal.

Proof. See [18, Lemma 2.28]. O

Lemma B.1.7. Sheafification commutes with restriction.

Proof. This follows from the adjunctions, in particular f=! - f£,. n
Lemma B.1.7 implies the following.

Lemma B.1.8. For any two E-presheaves F and G on X, there is a functorial
isomorphism Fly @ Gluy = (F®G) |v for any U € X.

B.2 Sites with many quasi-compact open subsets

In this subsection, we fix again an elementary quasi-abelian category E and a site X.

Proposition B.2.1. Suppose that any U € X is quasi-compact. Let F denote an
E-presheaf on X such that the sequence

0 FU) = [[FV)—= ] FOV xu W

Ved W,W’eud

1s strictly exact for every finite covering M of any U € X. Then F is a sheaf.
By [52, Corollary 1.2.28], Proposition B.2.1 follows from the following.

Lemma B.2.2. Proposition B.2.1 holds for any elementary abelian category E = A.
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Proof. Let $4 = {U; — U};e; denote a covering. Since U is quasicompact, we find a

finite subcovering o= {U; — U};.7 where I C I. Consider the commutative diagram

0 —— F(U) = [Tie; FU) —= T, e; F(Ui x0 Uj)

| [ [ (B.2.1)

0 — F(U) =2 [ F(U;) —2 F(U; xu U5)

el i ijel

where both 77 and 77,7 are the projections. It follows from the commutativity of
the left square that « is a monomorphism. It remains to show that the canonical

morphism ¥: im a — ker § is an isomorphism. We introduce some notation.
e Let @ denote the inverse of U: im & — ker E

e T, is the projection [[, ., F(U;) — F(Uy) and oy, := m;, o a for every ig € I.

e o/71: ima — F(U) is the inverse of the morphism o’: F(U) — im « induced

by «. It is an isomorphism because « is a monomorphism and A is abelian.
Similarly, @~': ima — F(U) denotes the inverse of the morphism &’: F(U) —

im & induced by a.

ker 8 |

“: ima — ima and e ker  — ker 3.

e 77 restricts to maps Wifm
o Write 7/™® for the composition ima — [],.; F(U;) 20, F(U,,) and Wﬁfrﬂ for
the composition ker § — [, , F(U;) o, (Us,)-

Lemma B.2.3. We have identities

ima
i0

kerg
i0 -

_ ~/—1 im o
= 0a " om %, and
o0 Todo 7Tl;~erﬂ

T

T

for every ig € 1.

Proof. Compose &’ = " o o/ with &'~" on the left and o/~" on the right to get

Now we compose with o on the left and again with ﬂ;oma on the left. This yields

ima _ _ima« / ~/—1 ima
7TZ-O —7T,L-O O(O{ o« O7TI~ )
o im o / ~/—1 im o
= (7'('1»0 e} Oé) o« e} 7Tff
o ~/—1 im
= 5, O &x o) 7Tf
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which is the first identity stated above in Lemma B.2.3.

To prove the second identity, we may assume without loss of generality that A is
small; otherwise we pass to a suitable subcategory. The Freyd-Mitchell Embedding
Theorem [60, Theorem 1.6.1] gives that A is the category of modules over some ring.
Let (si)ier € ker 5. Then <E> o W?erﬂ) ((si)ier) = (s7);.7 lies in the kernel of 3, thus
it lies in the image of a. That is, there exists an s € F(U) such that a(s) = (s;);.7-
With other words, s = (&’ 1odo ﬂlj‘erﬁ) ((si);er)- We have to show that a;,(s) = s;,
for all ig € I, since Wkerﬁ ((83)ier) = Sio-

Because { = {U; — U}z is a finite covering of U, {U; xy Uy, — Uj, b7 is a finite

covering of U;,. Thus the sequence

0 —— F(Ui) — [Lei F(U; xu Uiy) — 156 F(U; <0 Usy) v,y (Us o Uyy))

el g ]GI

is exact. That is, the element s;, is uniquely determined by its restrictions to the

open sets Uy xy U;,. Therefore, the computation

Si0|Ug><UUiO = iUy xy Uiy — (S|Ug) 0 S|Ug><UUiO
implies «;,(s) = s v, = Sip- Note that the first equality SiO‘ngUUiO = SZ|U;XUU1-O
follows from (s;);cr € ker 5. This finishes the proof. O

We claim that

=0 oa" o@owl;erﬁ

is a two-sided inverse of . First, we will show that it is a right-inverse. Since ker 3

is a subobject of []..; F(U), it suffices to show the commutativity of the diagrams

ker f —2°2 ker

ker B
ker B

for every ig € I. Now compute

TP oWod =i 00! = ay (B.2.2)
0

and therefore

Wkerﬂo(\llqu):WZerﬁo\I/oa’o& o(I>o7r1;er6

i0
(B.2.2) ~ ~
= oy, 0 ad lodo wlerﬁ

B.2.3 kerp
S
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We find that ® is a right-inverse of . It remains to compute that the diagrams

im o —) im

rim o
im o
ZD

are commutative for every iqg € I. We have errﬁ ol =Uo w}ma so that composing
with @ on the left yields

®omtl o = qime, (B.2.3)

We get
;(r)noa ((DO\I/) 1mO¢OO/O& O(I)Oﬂ_kerﬁ U
=q,o0d o d owjlferﬁ oW¥

(B.2.3) ~
="y, OO/ 1 oﬂ_}ma

B.23 ima
= T,

That is, ® is a left-inverse of W as well. We have thus shown that the top row of the

diagram (B.2.1) is exact. Since this choice of covering was arbitrary, F is a sheaf. [J
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Appendix C

Completeness of rings of formal
power series

We prove the following result.

Proposition C.0.1. Fizx a reqular sequence sy, ...,S, in a commutative ring S. We
consider the ideal I := (s1,...,,) and pick an arbitrary d € Ns,. If S is I-adically
complete, then S[Xy,...,Xa] is (X1,..., X4, $1,...,8n)-adically complete.

Lemma C.0.2. Let S denote a commutative ring, fix a reqular sequence sy, ..., S, €

S, and consider the ideal I := (s1,...,5,). The following are equivalent.
(1) S is I-adically complete.
(ii) S is, for everyi=1,...,n, s;-adically complete.

Proof. The direction (i) = (ii) is proven in [59, Tag 090T]. Now suppose (ii). [59,
Tag 091T] implies that S is, for every i = 1,...,n, derived s;-adically complete. It
is derived [-adically complete by [59, Tag 091Q]. Now use the notation from [59,
Tag 0BKC], that is consider the Koszul complexes K s =K, (S : s{, e s%) for every
J € N>y. Since sy, ..., s, is a regular sequence, the sequences s7, ..., s/ are regular.
[59, Tag 062F] gives that K73 is quasi-isomorphic to S/ <s{,...,s{l>, viewed as a

complex concentrated in degree zero. [59, Tag 091Z] implies that the canonical
S = Rlim (S ®¢ K3) = Rlim S/ <s{, . .,s%)

is an isomorphism. Here, the operator lim denotes the homotopy limit along the

maps --- — K3 — K}, see the discussion in [59, Tag 0BKC]. We apply [59, Tag

0941] ! to see that the right-hand side coincides with Rlim S/ (s{, . ,S{L), where
<——teN

Tn the notation of [59, Tag 0941], we choose C to be the site associated to the topological space
with one point.
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R@jeN denotes the derived functor of the inverse limit. In particular, taking zeroth

cohomology, S = lim S/ (3{, ey 37]1) It suffices to show that the canonical mor-
éf—]GN . '

phism @jeN S/ (Sjl, . 7331) — @jeN S/I7 is an isomorphism. But for every j > n,

I C (s,...,8,) for I = |j/n], proving the claim. O

Lemma C.0.3. Let S denote a commutative ring containing an element s € S such

that it is s-adically complete. Then S[X, ..., X4] is s-adically complete as well.

Proof. We have to show that the following morphism is an isomorphism:

(Y2 S[[Xl, c. ,Xd]] — @S[[Xl, .. ,Xd]]/Sj.
J
Let f € ker. That is for every j exists an f; € S[Xq,..., X ] such that f = s/ f;.
Writing f = 3", cna faX @ and f; = 3" qa fiaX @ for all j, this means that fo = s7 f4
for all a and for all 5. Since S is s-adically separated this implies f, = 0 for all «.
This shows f = 0. To prove surjectivity, pick f; € S[Xi,...,X4] for all j such that
(f;), € im S[Xy,..., X4]/s’,

J —
J

where f; denotes the image of f; modulo s7. This means that f; — f; € (s7) for every
1> j. Writing f; = > oy fiaX® for all j, this implies that fi, — fia € (s7) for every
[ > j. Therefore
(fia) € lim S/ s
j
Because S is s-adically complete, we conclude that there exists an f, € S for every
o such that fo = fjo mod 7. Set [ =3 faX* We claim that o(f) = (f_])

Indeed, we have

Iz

F=Fi=Y (fa= fia)X*=0 mod s’

a€Nd

for every j. This proves Lemma C.0.3. [

Proof of Proposition C.0.1. S[Xy,...,Xq] = S[X1,..., Xi—1, Xiz1, - .- Xg]| [ Xi] is Xi-
adically complete for every ¢ = 1,...,d. By Lemma C.0.2, S is s;-adically com-
plete for every i = 1,... n, therefore S[X1,..., X ] is s;-adically complete for every
1 =1,...,n, see Lemma C.0.3. But the sequence Xi,..., Xy, s1,...,s, is regular,

thus we can apply Lemma C.0.2 to finish the proof of Proposition C.0.1. O
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