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Abstract

We construct a solution functor within the context of a still hypothetical p-adic ana-

lytic Riemann-Hilbert correspondence. Our approach relies on the overconvergent de

Rham period sheaf B†dR, obtained from an ind-Banach completion of Binf along the

kernel of Fontaine’s map. A key result in this thesis is establishing a ÙD-B†dR-bimodule

structure on the period structure sheaf OB†dR. Here, ÙD denotes the sheaf of infinite

order differential operators introduced by Ardakov-Wadsley; notably, the analogous

statement does not hold for Scholze’s OBdR. We explain how this leads to a solution

functor for ÙD-modules and propose conjectures about its compatibility with Scholze’s

horizontal sections functor and the reconstruction of ÙD-modules from their solutions.
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Chapter 1

Introduction

1.1 Background

1.1.1 History and Motivation

In his 1900 address at the International Congress of Mathematicians, David Hilbert

presented 23 problems that would significantly impact 20th-century mathematics.

Among these, he posed a question about the existence of complex differential equa-

tions with specific singular points and monodromy groups. Deligne, Kashiwara, and

Mebkhout later answered this question with the Riemann-Hilbert correspondence,

linking D-modules and perverse sheaves. This connection opened totally new per-

spectives in representation theory.

Fix a prime p. k denotes a non-Archimedean field of mixed characteristic (0, p).

In a series of papers including [48, 49, 50, 51], Schneider and Teitelbaum developed

the theory of locally analytic representations of a k-analytic group G in locally con-

vex topological vector spaces over k. These kinds of representations arise naturally

in several places in number theory, for example in the p-adic local Langlands pro-

gram [25, 27, 29]. The author aims to study them with the ideas underpinning the

classical Riemann-Hilbert correspondence.

Schneider-Teitelbaum’s work inspired Ardakov-Wadsley [7, 6] and Ardakov-Bode-

Wadsley [5] to introduce the sheaf ÙD of infinite order differential operators on a given

smooth rigid-analytic variety X over a non-Archimedean field k in mixed charac-

teristic. There already have been strong applications to p-adic representation the-

ory, for example the Beilinson-Bernstein style localisation theorems [7, Theorem E]

and [2, Theorem C] as well as the construction of new classes of locally analytic

representations [3, Theorem C]. Therefore, we we aim to develop a Riemann-Hilbert

correspondence for ÙD-modules.
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Notation 1.1.1. κ denotes a finite field of characteristic p, W (κ) its ring of (always

p-typical) Witt vectors, and k is a finite extension of k0 := W (κ)[1/p]. Equip k with

the discrete valuation extending the one on k0.

Notation 1.1.2. X is a fixed smooth rigid-analytic k-variety.

Remark 1.1.3. We omit functional analytic details in this introduction for the sake

of clarity. They are expanded upon in the main body of this thesis. References are

included along the way.

1.1.2 Prosmans-Schneiders’ approach to the Riemann-Hilbert
correspondence

The standard proof of the classical Riemann-Hilbert correspondence fails in the p-

adic setting, due to the current absence of a six-functor formalism for holonomic ÙD-

modules, cf. [1, 17, 5, 18, 19, 32, 33]. Therefore we follow Prosmans-Schneiders’ [45]

approach in the Archimedean setting. View the structure sheaf O as a bimodule

object for the following two ring-objects: ÙD and the constant sheaf kX . This gives

Sol : D
ÄÙDäop

! D (kX) , M• 7! RHomÙD (M•,O) , and

Rec: D (kX)! D
ÄÙDäop

, F• 7! RHomkX
(F•,O) .

There is a canonical functorial morphism M• ! Rec (Sol (M•)) for every complex

M• of ÙD-modules. We would like it to be an isomorphism for a large collection of

M•, as this would imply that the restriction of Sol to a large full subcategory of

D
ÄÙDäop

is fully faithful. Whilst Prosmans-Schneiders observed that this is indeed

the case in the Archimedean setting, Ardakov-Ben-Bassat [4] showed that it is not

in the non-Archimedean setting, at least not over our preferred ground field k. This

suggests that we consider another context for non-Archimedean geometry.

1.1.3 p-adic Hodge theory

We work within the setting of [54]: Replace the constant sheaf kX and the structure

sheaf O on X with the positive de Rham period sheaf B+
dR and the positive de Rham

period structure sheaf OB+
dR on the pro-étale site Xproét. Then use a local description

of the sections of OB+
dR, cf. [55], to show that the augmented de Rham complex

0! B+
dR ! OB

+
dR

∇+
dR! OB+

dR⊗ν−1Oν
−1Ω1 ! · · ·! OB+

dR⊗ν−1Oν
−1Ωd ! 0

2



is exact. Here ν : Xproét ! X denotes the canonical projection of sites. This is the

main input for the construction [54, Theorem 7.6] of Scholze’s fully faithful functor filtered O-modules with
integrable connection satisfying

Griffiths transversality

 ↪!

 B+
dR-local systems, that is

finite locally free sheaves
of B+

dR-modules,

 , (1.1.1)

which is the first instance of a p-adic de Rham functor.

In the complex analytic setting, the solution functor is closely related to the de

Rham functor. Therefore, we expect that Prosmans-Schneiders’ ideas can be realised

within this geometric context.

1.2 Main results

We need an appropriate variant of the ÙD-kX-bimodule object O to apply Prosmans-

Schneiders’ ideas within the framework of p-adic Hodge theory. Following the work

of Scholze, OB+
dR seems to be the natural choice. But ÙD is a sheaf of infinite order

differential operators and the B+
dR-linear differential operators on OB+

dR are all of

finite order. Thus there is no sensible ν−1 ÙD-module structure on OB+
dR. Therefore,

we introduce variants of B+
dR and OB+

dR: the positive overconvergent de Rham period

sheaf 1 B†,+dR and the positive overconvergent de Rham period structure sheaf OB†,+dR .

The following local description of OB†,+dR in the style of [54, Proposition 6.10] is the

main technical input for our constructions.

Theorem 1.2.1 (Theorem 3.5.5). Assume that X is affinoid and equipped with an

étale morphism X ! Td := Sp k
〈
T±1 , . . . , T

±
d

〉
. Denote the induced pro-étale covering

introduced in the [54, proof of Corollary 4.7] by ‹X ! X. Then

lim−!
m≥0

B†,+dR |‹X ≠Z1, . . . , Zd
pm

∑
∼=
−! OB†,+dR |‹X , Zi 7! Ti“⊗1− 1“⊗ îT [i ó

is an isomorphism of sheaves of B†,+dR |‹X-algebras.

OB†,+dR is small enough to carry an action of ν−1 ÙD, in the following sense.

Theorem 1.2.2 (Theorem 4.2.1). There exists a ν−1 ÙD-B†,+dR -bimodule structure on

OB†,+dR such that the canonical morphism

ν−1O“⊗k0 B
†,+
dR ! OB

†,+
dR

is a morphism of ν−1 ÙD-B†,+dR -bimodule objects. It is unique.

1A similar construction appeared in [41, Definition 5.1.1]. It would be interesting to establish a

precise comparison and study applications of methods developed loc. cit. to the theory of ÙD-modules.
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OB†,+dR is large enough to behave like OB+
dR, in the following sense.

Theorem 1.2.3 (Theorem 4.3.8). The ν−1 ÙD-B†,+dR -bimodule structure on OB†,+dR in-

duces a B†,+dR -linear connection

∇†,+dR : OB†,+dR ! OB
†,+
dR
“⊗ν−1Oν

−1Ω1.

It is integrable, and the associated augmented de Rham complex is strictly exact:

0! B†,+dR ! OB
†,+
dR

∇†,+dR! OB†,+dR
“⊗ν−1Oν

−1Ω1 ! · · ·! OB†,+dR
“⊗ν−1Oν

−1ΩdimX ! 0.

Remark 1.2.4. Assume that X is affinoid and equipped with an étale morphism X !

Td = Sp k
〈
T±1 , . . . , T

±
d

〉
. The vector fields d/dTi lift canonically along the étale map

O
(
Td
)
! O (X) to elements ∂i ∈ ÙD(X). By Theorem 1.2.1, OB†,+dR has the sections

Z1, . . . , Zd, locally on the proétale site.

∂i · Zj :=
d

dZi
(Zj) = δij

then determines the action of ν−1 ÙD on OB†,+dR , where δij is the Kronecker delta.

1.3 Conjectures

We define the positive solution functor via the ν−1 ÙD-bimodule structure on OB†,+dR :

Sol+ : D
ÄÙDäop

! D
Ä
B†,+dR

ä
,M• 7! RHomν−1 ÙD Äν−1M•,OB†,+dR

ä
.

Following the classical [35, Proposition 4.2.1], the positive de Rham functor is

dR+ : D
ÄÙDä! D

Ä
B†,+dR

ä
,M• 7! Sol+ (D (M•)) [dimX].

Here, D is the ÙD-module duality functor, cf. [18, section 5.2]. We expect these con-

structions to be compatible with Scholze’s functor (1.1.1), in the following sense.

Conjecture 1.3.1 (Conjecture 5.3.3). Consider an O-module with integrable connec-

tion E. Equipped with the trivial filtration, Scholze’s functor (1.1.1) associates to it

a B+
dR-local system L. On the other hand, we view E as a ÙD-module. Then dR+ (E)

is concentrated in degree − dimX and, functorially in E,

H−dimX
(
dR+ (E)

)
⊗B†,+dR

B+
dR

∼=
−! L.
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We would like to reconstruct ÙD-modules from their solutions, following Prosmans-

Schneiders’ aforementioned work [45]. This requires to pass from the pro-étale site

back to the analytic space X. Here one runs into problems: there is a canonical

morphism χ : O ! R ν∗OB†,+dR , but we cannot expect it to be an isomorphism, cf. [54,

Proposition 6.16(ii)]. The issue boils down to the non-vanishing of the first continuous

Galois cohomology of B+
dR. As a solution, Fontaine [30] introduced B+

pdR, the positive

almost de Rham period ring 2. We conjecture the existence of an overconvergent

version B†pdR. A corresponding period structure sheaf OB†pdR should be a suitable

bimodule object, giving rise to a functor

Rec: D
Ä
B†,+dR

ä
! D

ÄÙDäop
,F• 7! R ν∗RHomB†,+dR

Ä
F•,OB†,+pdR

ä
.

We then expect Rec to be a quasi-left-inverse of Sol, at least on a suitable full sub-

category of the derived category of ÙD-modules. In particular, the canonical mapÙD −! Rec
Ä
Sol
ÄÙDää = R ν∗RHomB†,+dR

Ä
OB†,+dR ,OB

†,+
pdR

ä
(1.3.1)

should be an isomorphism. This would explain how to reconstruct ÙD from p-adic

Hodge theory, thereby justifying the title of this thesis.

1.4 Functional analysis

Ishimura [39] proved that an archimedean analog of (1.3.1) is an isomorphism, pro-

vided one takes track of the topologies on the sheaves. This result is a key input

for Prosmans-Schneiders’ [45]. Consequently, both loc. cit. and this thesis have to

operate within a framework that accommodates homological algebra whilst account-

ing for the topologies involved. Following Prosmans-Schneiders’ article, we work with

ind-objects in the category of k-Banach spaces.

Condensed mathematics [56] offers an alternative approach. It relates to the

formalism used in this thesis as follows: The [23, (proof of) Lemma A.15, Proposition

A.25], and [40, Proposition 6.1.9] provide a strongly monoidal cocontinuous exact

functor into the category of solid k-vector spaces

IndBank ! Vecsolid
k .

It translates the results of this thesis into the formalism of Vecsolid
k -valued sheaves.

2The acronym pdR comes from the french presque de Rham.
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1.5 Summary of the thesis

Chapter 2 concerns foundational notions from functional analysis. We introduce var-

ious period sheaves and period structure sheaves in chapter 3 and compute their

sections explicitly. ÙD enters the picture in chapter 4, where we construct the bimod-

ule structure on the overconvergent de Rham period structure sheaf and prove the

Poincaré Lemma. In chapter 5, we study the positive solution and de Rham functors.

1.6 Conventions and notation

= denotes an equality, ∼= denotes an isomorphism, and ' denotes an equivalence.

When an equality, isomorphism, or equivalence follows from a specific result, the

reference is written above the symbol denoting the equality, isomorphism, or equiv-

alence. For example, X
2.5.10∼= Y means: Lemma 2.5.10 implies that X and Y are

isomorphic.

Let F : C ! D be an additive functor between two additive categories. It ex-

tends to a functor between the associated categories of chain complexes and cochain

complexes. Abusing notation, we denote it again by F.

Given a symmetric monoidal category containing a monoid object S, Mod(S)

denotes the category of S-module objects. It is again symmetric monoidal if S is

commutative, cf. [18, section 2.2]. Throughout this article, the term module always

means left module, unless explicitly stated otherwise.

The natural numbers are N = {0, 1, 2, 3, . . . }. For any natural number n, write

N≥n := {n, n+ 1, n+ 2, n+ 3 . . . }.
All filtrations are descending.

Fix a prime number p throughout this article.

All Huber pairs (A,A+) are complete, that is both A and A+ are complete as

topological rings.

6



Chapter 2

Functional analysis

We assume that the reader is comfortable with Schneiders’ formalism of quasi-abelian

categories, see [52]. Some of our cited sources operate within the Archimedean setting;

nonetheless, the proofs remain applicable in the non-Archimedean context.

2.1 Seminormed, normed, and Banach modules

We follow [13, Chapter 5].

Rings and modules

Definition 2.1.1. A (non-Archimedean) seminormed ring is a unitial commutative

ring R equipped with a map | · | : R! R≥0 such that

• |0| = 0,

• |r + s| ≤ max{|r|, |s|} for all r, s ∈ R, and

• there is a C > 0 such that |rs| ≤ C|r||s| for all r, s ∈ R.

R is a (non-Archimedean) normed ring if the following implication holds for all r ∈ R:

|r| = 0 implies r = 0. A normed ring is a (non-Archimedean) Banach ring if it is a

complete metric space with respect to the metric (r, s) 7! |r − s|.

The following construction supplies examples of seminormed rings.

Definition 2.1.2. R denotes an abstract commutative ring and I ⊆ R an ideal.

Define the I-adic seminorm on R (with base p): Set |r| := p−v for every r ∈ R, where

v ∈ N∪{∞} is maximal with respect to the property that r ∈ Iv. Here I∞ :=
⋂∞
j=0 I

j

and p−∞ := 0. This turns R into a seminormed ring. It is a normed ring when R is

7



separated with respect to the I-adic topology. R is a Banach ring if it is separated

and complete with respect to the I-adic topology.

For any s ∈ R, the s-adic seminorm is the (s)-adic seminorm.

Lemma 2.1.3. Consider a map φ : R ! S between two Banach rings that is a

morphism of abstract rings, R carries an I-adic norm and S carries a J-adic norm,

and φ(I) ⊆ J . Then |φ(r)| ≤ |r| for all r ∈ R.

Proof. Fix the notation from Definition 2.1.2. Consider r ∈ R with |r| = p−v. Then

r ∈ Iv, and φ(I) ⊆ J implies φ(r) ∈ Jv. That is |φ(r)| ≤ p−v = |r|.

Definition 2.1.4. Fix a seminormed ring R. A (non-Archimedean) seminormed R-

module is an R-module M equipped with a map ‖ · ‖ : M ! R≥0 such that

• ‖m+ n‖ ≤ max{‖m‖, ‖n‖} for all m,n ∈M and

• there is a C > 0 such that ‖rm‖ ≤ C|r|‖m‖ for all r ∈ R, m ∈M .

M is a (non-Archimedean) normed R-module if the following implication holds for all

m ∈M : |m| = 0 implies m = 0. A normed R-module is a (non-Archimedean) Banach

R-module if it is a complete metric space with respect to the metric (m,n) 7! |m−n|.

Categories

Fix a seminormed ring R. We define the categories

BanR ⊆ NrmR ⊆ SNrmR (2.1.1)

of seminormed R-modules, normed R-modules, and R-Banach modules. The mor-

phisms are the R-linear maps φ : M ! N which are bounded, that is

‖φ(m)‖ ≤ C‖m‖

for a constant C = C(φ) > 0 and every m ∈M .

Proposition 2.1.5. The categories BanR, NrmR, and SNrmR are quasi-abelian.

They admit enough functorial projectives.

Proof. See [13, Propositions 5.1.5 and 5.1.10].

We the cite the following two Lemma from [9, Proposition 3.14]. Loc. cit. assumes

that R is a Banach ring, but the arguments apply as well for seminormed rings.

8



Lemma 2.1.6. Let f : M ! N be a morphism of R-Banach modules. Then

(i) ker(f) = f−1(0) with the restriction of the norm on M ,

(ii) coker(f) = N/f(M) with the residue norm,

(iii) im(f) = f(N) with the restriction of the norm on N , and

(iv) coim(f) = M/ ker(f) with the residue norm.

Lemma 2.1.7. Let f : M ! N be a morphism of R-Banach modules.

(i) It is a monomorphism if and only if it is injective.

(ii) It is an epimorphism if and only if f(M) ⊆ N is dense.

(iii) It is a strict monomorphism if and only if it is injective, the norm on M is

equivalent to the norm induced by N , and f(M) is a closed subset of N .

(iv) It is a strict epimorphism if and only if it is surjective and the residue norm on

M/ ker(f) is equivalent to the norm on N .

The inclusions (2.1.1) admit left adjoints: the separation and completion functors.

Definition 2.1.8.

(i) The separation functor SNrmR ! NrmR is M 7! M sep := M/{0}, equipped

with the quotient norm. That is, the norm of an element n ∈M sep is infm ‖m‖,
where the infinum runs over all preimages m ∈M of n.

(ii) The completion functor NrmR ! BanR sends a seminormed R-module N to

its completion “N ; see for example [22, section 1.1.7, the proof of Proposition 5].

(iii) The separated completion functor SNrmR ! BanR is the composition of the

completion functor and the separation functor. Abusing notation, we denote it

by M 7! M̂ := ‘M sep.

Lemma 2.1.9. The separated completion functoris exact.

Proof. See [13, Remark 5.1.7]

9



Closed symmetric monoidal structures

R continuous to denote a seminormed ring. Given seminormed R-modules M and N ,

equip M ⊗R N with the seminorm

‖x‖ := inf

{
max
i=1,...,n

‖mi‖‖ni‖ : x =
n∑
i=1

mi ⊗R ni

}

for all x ∈M ⊗R N . This defines a bifunctor

SNrmR×SNrmR ! SNrmR, (M,N) 7!M ⊗R N.

The separated tensor product is

NrmR×NrmR ! NrmR, (M,N) 7!M ⊗sep
R N := (M ⊗R N)sep ,

and the completed tensor product is

BanR×BanR ! BanR, (M,N) 7!M“⊗RN := ⁄�(M ⊗R N).

Lemma 2.1.10. (SNrmR, R,⊗R), (NrmR, R,⊗sep
R ), and

(
BanR, R,“⊗R) are closed

symmetric monoidal categories.

Proof. See the discussion in [13, subsubsection 5.1.1.2], especially loc. cit. Corollary

5.1.15.

Definition 2.1.11. For any two seminormed R-modules M and N , define the inter-

nal homomorphisms HomR (M,N) to be the seminormed R-module of all R-linear

bounded functions φ : M ! N , together with the seminorm

‖φ‖ := sup
m∈M
‖m‖6=0

‖φ(m)‖
‖m‖

.

Lemma 2.1.12. Fix M ∈ SNrmR, NrmR, or BanR. Then the assignment N 7!

HomR (M,N) defines a right adjoint of the functors −⊗RM , −⊗sep
R M , or −“⊗RM ,

respectively.

Proof. See the [13, remark following Corollary 5.1.15].

Notation 2.1.13. An R-Banach algebra S is a possibly non-commutative monoid ob-

ject in BanR. An S-Banach module is a left S-module object. BanS := Mod (S) is

the category of S-Banach modules, cf. subsection 1.6.

10



2.2 Ind-Banach modules

Fix a Banach ring R. BanR is neither complete nor cocomplete. Therefore, we

consider its ind-completion, cf. [40, chapter 6]. Note that “⊗R extends to a bifunctor“⊗R : Ind (BanR)× Ind (BanR)! Ind (BanR)Ç
“ lim−!
i∈I

”Vi

å“⊗R(“ lim−!
j∈J

”Wj

)
:= “ lim−!

i∈I
j∈J

”Vi“⊗RWj.

Lemma 2.2.1.
(
Ind (BanR) , R,“⊗R) is a closed symmetric monoidal elementary

quasi-abelian category. It has enough flat projectives stable under the monoidal struc-

ture “⊗R. Furthermore, it has all limits and colimits.

Proof. The first sentence follows from Lemma 2.1.10 and [52, Proposition 2.1.19]. The

second sentence follows again from [52, Proposition 2.1.19], which applies by the [13,

Propositions 5.1.16 and 5.1.17]. The last sentence follows from [40, Proposition 6.1.18]

because BanR has finite limits, cf. Lemma 2.1.10 and [59, Tag 002O].

Corollary 2.2.2. Filtered colimits in Ind (BanR) are strongly exact.

Proof. This follows from Lemma 2.2.1, by [52, Proposition 2.1.16].

Notation 2.2.3. An R-ind-Banach algebra S 1 is a possibly non-commutative monoid

object in Ind (BanR). An S-ind-Banach module is a left S-module object. IndBanS :=

Mod (S) is the category of S-ind-Banach modules, cf. subsection 1.6. In particular,

IndBanR = Ind (BanR) is the category of R-ind-Banach modules.

Lemma 2.2.4. Fix a category C and consider the canonical functor C ! Ind (C).

It commutes with finite colimits. If C has all finite limits, then Ind (C) has all finite

limits as well and the canonical functor commutes with those.

Proof. This is [40, Corollary 6.1.6 and 6.1.17].

Lemma 2.2.5. Let E be a quasi-abelian category and f : M ! N a morphism in

Ind(E). Then f is P if and only if f = “ lim−!i
”fi where each fi is P. Here,

P ∈ {mono, epi, strict, strict mono, strict epi} .

Proof. This is [9, Proposition 2.10]. Its proof implicitly uses Lemma 2.2.4.

1We decide against the usage of the term ind-R-Banach algebra. If spoken out loud, it might be
misunderstood as an ind-(R-Banach algebra).
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Corollary 2.2.6. Let F denote a field, complete with respect to a non-trivial non-

Archimedean valuation. Then, for any F -ind-Banach module V , −“⊗FV : IndBanF !

IndBanF is exact.

Proof. Applying Lemma 2.2.4 and 2.2.5, we may assume that V is a k-Banach module.

Thus the Corollary follows from [10, Theorem 3.50].

Finally, we consider the functor M 7! |M | that sends an R-Banach module to its

underlying abstract R-module. It extends to a functor

IndBanR !Mod(|R|), “ lim−!
i

”Mi 7! lim−!
i

|Mi| (2.2.1)

Lemma 2.2.7. The functor (2.2.1) commutes with finite limits.

Proof. Filtered colimits commute with finite limits by Corollary 2.2.2, thus it suffices

to show that the functor BanR !Mod(R), M 7! |M | commutes with finite limits.

In fact, it suffices to compute that it commutes with finite products and equalisers,

which is clear.

Fix a field F , complete with respect to a non-trivial non-Archimedean valuation.

Notation 2.2.8. An F -Banach space is an F -Banach module.

Definition 2.2.9. An F -ind-Banach space is bornological if it is isomorphic to an

object “ lim−! ”iEi where all the structural maps Ei ! Ej are injective. A complete

bornological F -vector space is a bornological F -ind-Banach space. CBornF denotes

the full subcategory of IndBanF of complete bornological F -vector spaces.

Notation 2.2.10. Consider a diagram i 7! Ei of complete bornological F -vector spaces.

Denote its limit in CBornF , if it exists, by lim −
b

i
Ei. lim −iEi is its limit in IndBanF .

Lemma 2.2.11. Given a diagram i 7! Ei of complete bornological F -vector spaces,

lim −
b

i
Ei exists and coincides with lim −iEi.

Proof. This follows from [9, Remark 3.44 and Proposition 3.60].

Lemma 2.2.12. The functor CBornF ! IndBanF is exact.

Proof. By Corollary [52, Corollary 1.2.28], it suffices to check that the induced functor

LH (CBornF )! LH (IndBanF )

between the left hearts is exact, cf. loc. cit. Definition 1.2.18. The result fol-

lows from [46, Proposition 5.16(b)]. We remark that this reference operates in the

archimedean context, but the proof goes through in our setting as well.
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CBornF carries a symmetric monoidal operation which we denote by “⊗b

F . In this

thesis, we do not need its precise [9, Definition 3.57] but only the following result.

Lemma 2.2.13. Consider two complete bornological F -vector spaces V and W , which

are inverse limits of Banach spaces. Then there is a functorial isomorphism

V“⊗FW ∼=
−!V“⊗b

FW

of F -ind-Banach spaces.

Proof. Both V and W are proper as bornological spaces, cf. [9, Definition 3.62].

This follows from [10, Proposition 3.11], together with the fact that Banach spaces

are proper, which follows directly from the definition. Lemma 2.2.13 thus follows

from [9, Proposition 3.64].

Lemma 2.2.14. −“⊗F lim −r F 〈π
rζ1, . . . , π

rζd〉 : IndBanF ! IndBanF is strongly

exact, given formal variables ζ1, . . . , ζd.

Proof. It preserves cokernels because the monoidal category IndBank is closed. To

show that it preserves kernels of arbitrary maps, apply [9, Remark 2.3] and Corol-

lary 2.2.2; thus it suffices to check that it preserves kernels of maps between k-Banach

spaces. Given a k-Banach space V , we compute with the Lemma 2.2.11 and 2.2.13:

V“⊗F lim −
r

F 〈πrζ1, . . . , π
rζd〉 ∼= V“⊗b

F lim −
r

bF 〈πrζ1, . . . , π
rζd〉 .

As CBornF ↪! IndBanF preserves kernels, [18, Corollary 3.51] gives the result.

2.3 Localisations

Fix a seminormed ring R and an element r ∈ R.

Notation 2.3.1. Given a seminormed R-module M , equip M [1/r] with the seminorm

‖n‖ := inf ‖m‖/|ri|. The infinum varies along expressions n = m/ri with m ∈M .

Lemma 2.3.2. M ⊗R R[1/r]
∼=
−!M [1/r] as seminormed R[1/r]-modules for any R-

Banach module M .

Proof. Denote the canonical map M ! M [1/r] by φ. We aim to exploit Yoneda’s

Lemma to show that it is an isomorphism: We claim

HomR[1/r] (M [1/r], V )! HomR (M,V ) , f 7! f ◦ φ
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is a bijection for every seminormed R[1/r]-module V . This is clear when we consider

the Hom in the category of abstract modules. It remains to check that the Hom also

coincide when they only capture the bounded linear maps. That is, we have to check

the following for every R[1/r]-linear map f : M [1/r] ! V : f is bounded if and only

if f ◦ φ is bounded.

The implication ⇒ follows because φ is bounded. To prove the converse, fix n ∈
M [1/r] and a presentation n = m/ri. C > 0 is a bound on the scalar multiplication

R[1/r]× V ! V . Then

‖f(n)‖ = ‖(f ◦ φ)(m)

ri
‖ ≤ C| 1

ri
|‖(f ◦ φ)(m)‖ ≤ C|1|‖f ◦ φ‖‖m‖

|ri|

Taking the infinum over all such expressions n = m/ri, we find ‖f‖ ≤ C|1|‖f ◦φ‖.

Lemma 2.3.3. −⊗RR[1/r] : SNrmR ! SNrmR preserves kernels of maps φ : M !

N when N is r-torsion free.

Proof. There is a canonical linear map τ : (kerφ) [1/r]! ker (φ[1/r]), which is bijec-

tive. It remains to check that the seminorms on both sides coincide. Recall that for

every x ∈ (kerφ) [1/r],

‖x‖ = inf
x=m/ri

m∈kerφ

‖m‖
|ri|

‖τ(x)‖ = inf
x=m/ri

m∈M

‖m‖
|ri|

.

We may therefore compare the infinums’ indexing sets

Skerφ :=
{(
m, ri

)
: x = m/ri and m ∈ kerφ

}
,

SM :=
{(
m, ri

)
: x = m/ri and m ∈M

}
.

We have to check that both sets coincide. The inclusion Skerφ ⊆ SM is clear. Consider

(m, ri) ∈ SM to prove ⊇. Now pick some
Ä‹m, rĩä ∈ Skerφ. The equality m/ri = x =‹m/rĩ implies m/1 ∈ ker (φ[1/r]). That is φ(m)/1 = 0, thus φ(m) ∈ N is killed

by some power of r. Because N is r-torsion free, this implies φ(m) = 0. We find

(m, ri) ∈ Skerφ, as desired.

Lemma 2.3.4. The canonical morphism ÿ�M ⊗R N
∼=
−! M̂“⊗R“N is an isomorphism

for any two normed R-modules M and N .

Proof. This follows from the adjunctions.
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Corollary 2.3.5. Consider a strictly exact complex M ′ φ′
−!M

φ
−!M ′′ of R-Banach

modules. If M ′′ is r-torsion free, then

M ′“⊗R÷R[1/r]
φ′“⊗R id
−! M“⊗R÷R[1/r]

φ“⊗R id
−! M ′′“⊗R÷R[1/r] (2.3.1)

is a strictly exact complex of ÷R[1/r]-Banach modules.

Proof. By assumption, φ′ is strict and the canonical morphism ι : imφ′ ! kerφ is an

isomorphism. We apply −“⊗RR[1/r] to ι:

• Regarding its domain,

(imφ′)⊗R R[1/r] = ker (M ! cokerφ′)⊗R R[1/r]
2.3.3∼= ker (M ⊗R R[1/r]! coker (φ′)⊗R R[1/r])

∼= ker
(
M ⊗R R[1/r]! coker

(
φ′ ⊗R idR[1/r]

))
= im

(
φ′ ⊗R idR[1/r]

)
.

The application of Lemma 2.3.3 requires that the canonical morphism M !

cokerφ′ is strict and cokerφ′ does not have r-torsion. The strictness is formal,

see [52, Remark 1.1.2(a)]. Regarding the torsion, consider [m] ∈ cokerφ′ =

M/ kerφ such that r[m] = 0. That is rm ∈ kerφ. This implies rφ(m) =

φ(rm) = 0, thus φ(m) = 0 because M ′′ is r-torsion free. Therefore, [m] = 0.

• Regarding its codomain,

(kerφ)⊗R R[1/r] ∼= ker
(
φ⊗R idR[1/r]

)
by Lemma 2.3.3.

It follows that ι⊗RidR[1/r] coincides with the canonical morphism im
(
φ′ ⊗R idR[1/r]

)
!

ker
(
φ⊗R idR[1/r]

)
, which is thus an isomorphism. That is

M ′ ⊗R R[1/r]
φ′⊗Rid
−! M ⊗R R[1/r]

φ“⊗R id
−! M ′′ ⊗R R[1/r]

is strictly exact. Now apply the separated completion functor; the Lemmata 2.3.4

and 2.1.9 imply that (2.3.2) is strictly exact.

Let F be a field which is complete with respect to a non-trivial non-Archimedean

valuation. Fix a pseudo-uniformiser π ∈ F , that is 0 < |π| < 1. The Banach ring of

power-bounded elements is F ◦ = {x ∈ F : |x| ≤ 1}. Consider R = F ◦ and r = π.
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Lemma 2.3.6. Let M denote an F ◦-Banach module carrying the π-adic norm. As-

sume further that M has no π-torsion. Then M [1/π] is an F -Banach space, in

particular M“⊗F ◦F ∼=
−!M [1/π].

Proof of Lemma 2.3.6. M is the unit ball of M [1/π] because it is π-torsion free. Any

given Cauchy sequence in M [1/π] is bounded, thus we can assume it lies in M . Since

M is complete, it follows that such a sequence converges in M , therefore it converges

in M [1/π]. This shows that M [1/π] is complete. Finally, apply Lemma 2.3.2.

Corollary 2.3.7. Consider a strictly exact complex M ′ φ′
−!M

φ
−!M ′′ of F ◦-Banach

modules. If M ′′ is π-torsion free, then

M ′“⊗F ◦F φ′“⊗R id
−! M“⊗F ◦F φ“⊗R id

−! M ′′“⊗F ◦F (2.3.2)

is a strictly exact complex of F -Banach spaces.

Proof. ◊�F ◦[1/p]
∼=
−!F by Lemma 2.3.6, thus Corollary 2.3.5 applies.

2.4 Banach and ind-Banach modules of power se-

ries

Fix a Banach ring R.

Notation 2.4.1. Let Ω denote a possibly infinite set. N(Ω) is the set of tuples α =

(αω)ω∈Ω ∈ NΩ such that |α| :=
∑

ω∈Ω αω is finite. Write

ζα :=
∏
ω∈Ω

ζαωω

for a given set of formal variables {ζω : ω ∈ Ω} and all α = (αω)ω∈Ω ∈ N(Ω).

Definition 2.4.2. Let M denote an R-Banach module and Ω a fixed set. An element

of the R-module M 〈ζω : ω ∈ Ω〉 is a formal expression∑
α∈N(Ω)

mαζ
α ∈

∏
α∈N(Ω)

Mζα,

such that the sets
{
α ∈ N(Ω) : mα ≥ ε

}
are finite for all ε > 0. We equipM 〈ζω : ω ∈ Ω〉

with the norm

‖
∑
α∈N(Ω)

mαζ
α‖ := sup

α∈N(Ω)

‖mα‖.
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Remark 2.4.3. When R = F is a field, complete with respect to a non-trivial non-

Archimedean valuation, there is the canonical isomorphism

c0

Ä
N(Ω)

ä ∼=
−!M 〈ζω : ω ∈ Ω〉 ,Ä

φ : N(Ω) ! F
ä
7!

∑
α∈N(Ω)

φ (α) ζα,

cf. [47, chapter 3]. We chose the notation M 〈ζω : ω ∈ Ω〉 to emphasise that Defini-

tion 2.4.2 is a generalisaton of Tate algebras, in view of section 2.5.

Notation 2.4.4. Ban≤1
R denotes the category whose objects are R-Banach modules

and whose morphisms are the R-linear maps which are bounded by 1.

Let {Mi}i∈I denote a family of R-Banach modules. Their coproduct exists in

Ban≤1
R , cf. [13, subsubsection 5.1.1.1]. Denote it by

∐≤1
i∈IMi. It is the non-expanding

coproduct.

Lemma 2.4.5. Let M denote an R-Banach module and Ω a fixed set. Then the

universal property of the non-expanding coproduct induces an isomorphism∐
α∈N(Ω)

≤1
Mζα

∼=
−!M 〈ζω : ω ∈ Ω〉 (2.4.1)

of R-Banach modules.

Proof. [13, Subsubsection 5.1.1.1] explains that
∐≤1

α∈N(Ω) Mζα is the completion of the

direct sum
⊕

α∈N(Ω) Mζα equipped with the norm

‖ (mαζ
α)α∈N(Ω) ‖ := sup

α∈N(Ω)

‖mα‖.

On the other hand, M 〈ζω : ω ∈ Ω〉 is the completion of M [ζω : ω ∈ Ω], the subspace

of all finite sums
∑

α∈N(Ω) mαζ
α carrying the induced norm

‖
∑
α∈N(Ω)

mαζ
α‖ = sup

α∈N(Ω)

‖mα‖.

The morphism (2.4.1) thus arises as the completion of the isomorphism⊕
α∈N(Ω)

Mζα
∼=
−!M [ζω : ω ∈ Ω]

of normed R-modules.

17



Lemma 2.4.6. M is an R-Banach module and Ω a fixed set. Given any m :=

(mα)α∈N(Ω) ⊆M with ‖rmα‖ = |r|‖mα‖ for all r ∈ R and ‖mα‖ ≤ 1 for all α ∈ N(Ω),∑
α∈N(Ω)

rαζ
α 7!

∑
α∈N(Ω)

rαmα

defines a morphism R 〈ζω : ω ∈ Ω〉!M of R-Banach modules.

Proof. By Lemma 2.4.5, we can exploit the universal property of the non-expanding

coproduct. Thus we may check that the maps R ! T , r 7! rmα are bounded by 1

for all α ∈ NΩ: for all r ∈ R, ‖rmα‖ ≤ |r|‖mα‖ ≤ |r| · 1.

Lemma 2.4.5(i) implies that the operation M 7!M 〈ζω : ω ∈ Ω〉 defines a functor

BanR ! BanR. By [40, Proposition 6.1.9], it extends canonically to a functor

IndBanR ! IndBanR, which we denote again by M• 7! M• 〈ζω : ω ∈ Ω〉. Loc. cit.

explains that this is not an abuse of notation, as the canonical morphisms

“ lim−!
i∈I

” (Mi 〈ζω : ω ∈ Ω〉)
∼=
−!M• 〈ζω : σ ∈ Ω〉

are isomorphisms for all M• = “ lim−! ”i∈IMi ∈ IndBanR.

Lemma 2.4.7. Fix an R-ind-Banach module M• = “ lim−! ”i∈IMi and a set Ω. Then

M•“⊗RR 〈ζω : ω ∈ Ω〉
∼=
−!M• 〈ζω : ω ∈ Ω〉 , (2.4.2)

the canonical morphism, is an isomorphism.

Proof. We may assume without loss of generality that M• = M is an R-Banach

module. The Lemma then follows from Lemma 2.4.5 and the [13, last sentence in the

proof of Proposition 5.1.16].

Corollary 2.4.8. M• 7!M• 〈ζω : ω ∈ Ω〉 is strongly exact for every set Ω.

Proof. This follows from Lemma 2.4.7 and [13, Proposition 5.1.16].

Notation 2.4.9. β + γ := (βω + γω)ω∈Ω ∈ N(Ω) for β = (αω)ω∈Ω , γ = (γω)ω∈Ω ∈ N(Ω).

Lemma 2.4.10. Let S denote an R-Banach algebra and Ω a fixed set. ThenÑ ∑
α∈N(Ω)

s1αζ
α

é
·

Ñ ∑
α∈N(Ω)

s2αζ
α

é
:=

∑
α∈N(Ω)

( ∑
α=β+γ

s1βs2γ

)
ζα

makes S 〈ζω : ω ∈ Ω〉 an S-Banach algebra.
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Proof. This is obvious.

Lemma 2.4.11. Consider a morphism φ : S ! T of R-Banach algebras and a set Ω.

Given any tuple t := (tω)ω∈Ω ∈ TΩ with ‖rtα‖ = |r|‖tα‖ for all r ∈ R and ‖tα‖ ≤ 1

for all t ∈ N(Ω), ∑
α∈N(Ω)

sαζ
α 7!

∑
α∈N(Ω)

φ (sα) tα

defines a morphism S 〈ζω : ω ∈ Ω〉! T of R-Banach algebras.

Proof. See Lemma 2.4.6 for the construction of the morphism

R 〈ζω : ω ∈ Ω〉! T,
∑
α∈N(Ω)

rαζ
α 7!

∑
α∈N(Ω)

rtα

of R-Banach modules. Apply Lemma 2.4.7 and [52, Proposition 1.5.2] to lift it to the

desired morphism. It is bounded, S-linear, and multiplicative by construction.

Fix a pseudo-uniformiser π ∈ R, that is 0 < |π| < 1.

Notation 2.4.12. Let M be an R-Banach module, Ω a fixed set, and q ∈ N. Define

M

≠
ζω
πq

: ω ∈ Ω

∑
:= M 〈ζω : ω ∈ Ω〉 〈ηω : ω ∈ Ω〉 /(πqηω − ζω : ω ∈ Ω),

an R-Banach module, where the ηω denote formal variables. We write ζω/p
q for the

images of the ηω in M
〈
ζω
πq

: ω ∈ Ω
〉
.

If M = S is an R-Banach algebra, we view S
〈
ζω
πq

: ω ∈ Ω
〉

as an R-Banach algebra

where the multiplication is induced by Lemma 2.4.10.

Fix q ∈ N. The operation M 7!M
〈
ζω
πq

: ω ∈ Ω
〉

defines a functor BanR ! BanR.

By [40, Proposition 6.1.9], it extends canonically to a functor IndBanR ! IndBanR,

which we denote again by M• 7! M•
〈
ζω
πq

: ω ∈ Ω
〉
. Loc. cit. explains that this is not

an abuse of notation, as the canonical morphisms

“ lim−!
i∈I

”

Å
Mi

≠
ζω
πq

: ω ∈ Ω

∑ã
∼=
−!M•

≠
ζω
πq

: σ ∈ Ω

∑
are isomorphisms for all M• = “ lim−! ”i∈IMi ∈ IndBanR.

Lemma 2.4.13. M• 7!M•
〈
ζω
πq

: ω ∈ Ω
〉

is strongly exact for every q ∈ N and set Ω.

Proof. Fix an R-Banach module M and consider the morphism

M 〈ηω : ω ∈ Ω〉!M

≠
ζω
πq

: ω ∈ Ω

∑
, ηω 7!

ζω
πq
.

It is an isomorphism, as one directly constructs a two-sided inverse via the universal

property of the non-expanding coproduct, see Lemma 2.4.5. Lemma 2.4.13 thus

follows from Corollary 2.4.8.
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Lemma 2.4.14. Let M denote an R-Banach module, Ω a fixed set, and q ∈ N. Then

M 〈ζω : ω ∈ Ω〉!M

≠
ζω
πq+1

: ω ∈ Ω

∑
lifts canonically to a morphism of R-Banach modules as follows:

M

≠
ζω
πq

: ω ∈ Ω

∑
!M

≠
ζω
πq+1

: ω ∈ Ω

∑
If M = S is an R-Banach algebra, this defines a morphism of R-Banach algebras.

Proof. Exploit the universal property of the non-expanding coproduct, cf. Lemma 2.4.5,

to write down the morphism

M 〈ζω : ω ∈ Ω〉 〈ηω : ω ∈ Ω〉!M

≠
ζω
πq+1

: ω ∈ Ω

∑
,

given by ηαω 7! π|α| (ζω/π
q)α for all α ∈ N(Ω). It factors through

M 〈ζω : ω ∈ Ω〉 〈ηω : ω ∈ Ω〉 / (πqηω − ζω : ω ∈ Ω)!M

≠
ζω
πq+1

: ω ∈ Ω

∑
.

Complete to get the desired map. The last sentence of Lemma 2.4.14 is clear.

Lemma 2.4.14 furnishes a commutative diagram of R-Banach modules:

M 〈ζω : ω ∈ Ω〉 −!M

≠
ζω
π

: ω ∈ Ω

∑
−!M

≠
ζω
π2

: ω ∈ Ω

∑
−! . . . . (2.4.3)

Definition 2.4.15. Let M denote an R-Banach module and Ω a fixed set. We denote

the formal colimit of the diagram (2.4.3) by

M

≠
ζω
π∞

: ω ∈ Ω

∑
:= “ lim−!

q∈N
”M

≠
ζω
πq

: ω ∈ Ω

∑
.

This is, by definition, an R-ind-Banach module. If M = S is an R-Banach algebra,

we view S
〈
ζω
π∞

: ω ∈ Ω
〉

as an R-ind-Banach algebra.

Following previous discussion, M 7!M
〈
ζω
π∞

: ω ∈ Ω
〉

extends to a functor

IndBanR ! IndBanR, “ lim−!
i∈I

”Mi 7! lim−!
i∈I

Mi

≠
ζω
π∞

: ω ∈ Ω

∑
.

which we denote by M• 7! M•
〈
ζω
π∞

: ω ∈ Ω
〉
. Loc. cit. explains that this is not an

abuse of notation, as the canonical morphisms

“ lim−!
i∈I

” (Mi 〈ζω : ω ∈ Ω〉)
∼=
−!M• 〈ζω : σ ∈ Ω〉

are isomorphisms for all M• = “ lim−! ”i∈IMi ∈ IndBanR.

Lemma 2.4.16. M• 7!M•
〈
ζω
π∞

: ω ∈ Ω
〉

is strongly exact for every set Ω.

Proof. By Lemma 2.2.5, it suffices to check the lemma for the restriction of the functor

to BanR. Now the result follows from Lemma 2.4.13 and Corollary 2.2.2.
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2.5 Banach and ind-Banach completions

We continue to fix a Banach ring R, together with a pseudo-uniformiser π ∈ R.

Recall Notation 2.4.12.

Definition 2.5.1. Fix a commutative R-Banach algebra S and a subset Σ ⊆ S. Set

S

≠
Σ

πq

∑
:= S

≠
ζσ
πq

: σ ∈ Σ

∑¬Å
σ − πq ζσ

πq
: σ ∈ Σ

ã
,

for all q ∈ N. This is, by definition, an R-Banach algebra. We write σ/pq for the

images of the ζσ/π
q in S

〈
Σ
πq

〉
.

Notation 2.5.2. When Σ = {s1, . . . , sd} is finite, abbreviate

S
〈s1, . . . , sd

πq

〉
:= S

≠
Σ

πq

∑
.

Remark 2.5.3. The ideal
(
σ − pq ζσ

πq
: σ ∈ Σ

)
in Definition 2.5.1 is not closed in general,

see for example [11, Proposition 5.7].

Lemma 2.5.4. For a commutative R-Banach algebra S, a subset Σ ⊂ S, and q ∈ N,

δq : S

≠
ζω
πq

: ω ∈ Ω

∑
! S

≠
ζω
πq+1

: ω ∈ Ω

∑
denotes the map constructed by Lemma 2.4.14. It factors through a morphism

S

≠
Σ

πq

∑
! S

≠
Σ

πq+1

∑
of R-Banach algebras.

Proof. The computations

δq
Å
σ − πq ζσ

πq

ã
= σ − πq+1 ζσ

πq+1

for all σ ∈ Σ imply

δq
ÅÅ

σ − πq ζσ
πq

: σ ∈ Σ

ãã
⊆
Å
σ − πq+1 ζσ

πq+1
: σ ∈ Σ

ã
.

The δq are bounded, thus the statement for the closures of the ideals follows.

Lemma 2.5.4 gives a commutative diagram

S 〈Σ〉 −! S

≠
Σ

π1

∑
−! S

≠
Σ

π2

∑
−! . . . . (2.5.1)
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Definition 2.5.5. Let S denote a commutative R-Banach algebra and Σ ⊂ S a fixed

subset. We denote the formal colimit of the diagram (2.4.3) by

S

≠
Σ

π∞

∑
:= “ lim−!

q∈N
”S

≠
Σ

πq

∑
.

This is, by definition, an R-ind-Banach algebra.

Notation 2.5.6. When Σ = {s1, . . . , sd} ⊆ S is finite, abbreviate

S
〈s1, . . . , sd

π∞

〉
:= S

≠
Σ

π∞

∑
Definition 2.5.7. An R-Banach module M is bounded if

sup
m∈M

‖m‖ < C

for some constant C = C(M) > 0. In this case, M is bounded by C.

Example 2.5.8. R = F is a field, complete with respect to a non-Archimedean non-

trivial valuation. S = F 〈T, L〉 is the Tate algebra in two variables and Σ is its ideal

generated by T − L. Then the canonical morphism

F 〈T, L〉
≠
T − L
π

∑
6∼=
−! F 〈T, L〉

≠
Σ

π

∑
is not injective: T − L is a non-zero element of the domain, but it vanishes in

F 〈T, L〉 〈Σ/π〉. Indeed, for all i ∈ N,

|πi|‖T − L‖ = ‖πi (T − L) ‖ ≤ ‖ζπi(T−L)‖ ≤ 1.

This implies ‖T − L‖ = 0, thus T − L = 0.

We resolve this issue by considering R = F ◦, S = F ◦ 〈T, L〉, and Σ = (T − L)

instead. Then F ◦ 〈T, L〉 is bounded by 1, thus Lemma 2.5.9 applies.

Lemma 2.5.9. Fix two commutative R-Banach algebras S and T as well as a subset

Σ ⊆ S. We further assume that T is bounded by 1 and for all t1, t2 ∈ T , ‖t1t2‖ ≤
‖t2‖‖t2‖. Also, π = π · 1 ∈ T is not a zero-divisor. Then, for every q ∈ N, there is

a bijection between the set of morphisms φ : S 〈Σ/πq〉! T of R-Banach algebras and

the set of morphisms of ψ : S ! T of R-Banach algebras such that

(i) πq divides φ(σ) ∈ T for all σ ∈ Σ and

(ii) ‖φ(σ)‖ ≤ ‖πq‖ for all σ ∈ Σ. Here, ‖ · ‖ denotes the norm on T .
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The bijection is given by φ 7! ψ := φ|S.

Proof. Firstly, we show that the assignment φ 7! φ|S defines the desired map. Indeed,

given a morphism φ : S 〈Σ/πq〉! T of R-Banach algebras, we find that

(i) φ(σ) = πqφ (σ/πq) ∈ T . That is, πq divides φ(σ).

(ii) Furthermore,

‖φ(σ)‖ ≤ ‖πqφ (σ/πq) ‖ ≤ ‖πq‖‖φ (σ/πq) ‖ ≤ ‖πq‖1 = ‖πq‖.

This computation relies on the assumptions on T .

Secondly, we check that φ 7! φ|S is injective. Pick two maps φ, φ′ : S
〈

Σ
πq

〉
! T

which agree on S. It suffices to show that they agree on elements of the form σ/πq

where σ ∈ Σ. But we compute

πqφ
( σ
πq

)
= φ (σ) = φ′ (σ) = πqφ′

( σ
πq

)
.

Since π ∈ T is not a zero-divisor, we find φ (σ/πq) = φ′ (σ/πq).

Thirdly, we prove that φ 7! φ|S is surjective. That is, we have to extend a given

ψ : S ! T satisfying (i) and (ii) to a morphism S 〈Σ/πq〉! T of R-Banach algebras.

Extend ψ with Corollary 2.4.11 to a morphism

S

≠
ζσ
πq

: σ ∈ Σ

∑
! T,

ζσ
πq
7!

φ(σ)

πq

of R-Banach algebras. It vanishes on the ideal generated by all the σ− πqζσ/πq, and

thus it vanishes on the closure. Therefore, the map above factors through a morphism

φ : S

≠
Σ

πq

∑
! T

of R-Banach algebras. By construction, φ|S = ψ.

Lemma 2.5.10. Consider a commutative R-Banach algebra S which is bounded by

1 and for all s1, s2 ∈ S, ‖s1s2‖ ≤ ‖s1‖‖s2‖. Fix a subset Σ ⊆ S. I := (Σ) is the ideal

generated by this subset. Then, for every q ∈ N, the canonical morphism

S

≠
Σ

πq

∑
∼=
−! S

≠
I

πq

∑
(2.5.2)

is an isomorphism of S-Banach algebras. It is an isomorphisms of S-ind-Banach

algebras for q =∞.
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Proof. Assume q <∞ without loss of generality and construct the morphism

S

≠
ζi
πq

: i ∈ I
∑
! S

≠
Σ

πq

∑
,
ζi
πq
7!

i

πq

of S-Banach algebras with Lemma 2.4.11. It factors through the desired two-sided

inverse of (2.5.2).

Proposition 2.5.11. Fix a commutative ring S containing a finitely generated ideal

I, such that S is I-adically separated and complete. Equip S with the I-adic norm.

Let ζ denote a formal variable. Then the topological algebra underlying the Banach

algebra S 〈ζ〉 carries the (I)-adic topology, where (I) ⊆ S 〈ζ〉 is the ideal generated by

the image of I in S 〈ζ〉.
Now fix an element s ∈ S and a natural number q. Then the topological algebra un-

derlying the Banach algebra S
〈
s
πq

〉
carries the (I)-adic topology, where (I) ⊆ S 〈s/πq〉

is the ideal generated by the image of I in S 〈s/πq〉.

We need the following two Lemmata in order to prove Proposition 2.5.11.

Lemma 2.5.12. Fix a surjective map φ : A ! B of abstract commutative rings,

together with an ideal J ⊆ A such that A is J-adically separated and complete. Equip

B with the quotient topology. Then B carries the φ(J)-adic topology.

Proof. A subset U ⊆ B is open if its preimage φ−1(U) ⊆ A is open. In this case,

there exists an n ∈ N such that Jn ⊆ φ−1(U), thus φ(J)n = φ (Jn) ⊆ U .

It remains to show that for each n ∈ N, φ(J)n ⊆ B is open. Again, this is the

case once its preimage is open. But its preimage φ−1 (φ(J)n) is an ideal in A and it

contains Jn. This implies that it is open.

Lemma 2.5.13. Let S commutative R-Banach algebra, s ∈ S, and q ∈ N. Then

S 〈ζ〉 /(πqζ − s)
∼=
−!S

〈 s
πq

〉
, ζ 7!

s

πq
(2.5.3)

is an isomorphism of S-Banach algebras.

Proof. One constructs the map (2.5.3) and its two-sided inverse via Lemma 2.4.11.

Proof of Proposition 2.5.11. Fix a power series f =
∑

α≥0 fαζ
α ∈ S 〈ζ〉. We have, by

definition, ‖f‖ ≤ p−r if and only if ‖fα‖ ≤ p−r for all α ≥ 0. In order to prove the

first statement, we therefore have to show

‖fα‖ ≤ p−r for all α ≥ 0⇔ f ∈ (I)r. (2.5.4)
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The direction ⇐ is clear. It remains to check ⇒. Write J := Ir and fix a finite

generating set (x1, . . . , xn) = J . Define eα := supfα∈Je e for all α ≥ 0. Note that

for all α ≥ 0, the assumption ‖fα‖ ≤ p−r implies f ∈ Ir = J , which gives eα ≥ 1.

Therefore, we can write, for all α ≥ 0,

fα =
n∑
i=1

fiαxi

for certain fiα ∈ Jeα−1. Also, fα ! 0 for α!∞ implies

eα !∞ for α!∞. (2.5.5)

Thus ‖fiα‖ ≤ p−(eα−1) ! 0 for α!∞, and the formal power series fi :=
∑

α≥0 fiαζ
α

define elements of S〈ζ〉 for all i = 1, . . . , n. But then

f =
∑
α≥0

fαζ
α =

∑
α≥0

n∑
i=1

fiαxiζ
α =

n∑
i=1

(∑
α≥0

fiαζ
α

)
xi =

n∑
i=1

fixi ∈ (J) = (I)r.

This finishes the proof of⇒ in (2.5.4), and we get the first half of Proposition 2.5.11.

Apply Lemma 2.5.12 to S 〈ζ〉! S 〈ζ〉 /(πqζ − s)
2.5.13∼= S 〈s/πq〉 for the second half.

2.6 Categories of sheaves

Fix a Banach ring R and a site X.

We assume that the reader is comfortable with Schneiders’ formalism of sheaves

valued in quasi-abelian categories, cf. [52]. See also Appendix B.

Lemma 2.6.1. Suppose all coverings in X are finite. A BanR-presheaf on X is a

sheaf if and only if the following sequence is strictly exact for every open U ∈ X and

every covering U of U :

0! F(U)!
∏
V ∈U

F(V )!
∏

W,W ′∈U

F (W ×U W ′) .

Proof. The implication ⇒ is clear. ⇐ follows because BanR has finite products.

Lemma 2.6.2. Given a sheaf F : X ! BanR, its composition with the canonical

functor BanR ! IndBanR is a sheaf of R-ind-Banach modules.

Proof. Lemma 2.2.4 applies because BanR has finite limits.

Recall the definition of the functor (2.2.1).
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Definition 2.6.3. Given a sheaf F of R-ind-Banach algebras on X, |F| is the sheafi-

fication of the presheaf U 7! |F(U)| of abstract |R|-modules.

Lemma 2.6.4. Given a sheaf F of R-ind-Banach algebras on X, the canonical map

|F(U)|
∼=
−! |F|(U) is an isomorphism of abstract |R|-modules if X has only finite

coverings.

Proof. This follows from Lemma 2.2.7.

Notation 2.6.5. R is a monoid in the category of sheaves on X with values in a closed

symmetric monoidal quasi-abelian category E. M is an R-module object.

(i) R is a sheaf of S-Banach algebras if E = BanS, where S is an R-Banach

algebra. M is a sheaf of R-Banach modules.

(ii) R is a sheaf of S-ind-Banach algebras if E = IndBanS, where S is an R-ind-

Banach algebra. M is a sheaf of R-ind-Banach modules.
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Chapter 3

Period sheaves

We introduce the overconvergent de Rham period sheaf and the overconvergent de

Rham period structure sheaf. Our constructions are inspired by [54, section 6].

3.1 Conventions and notation

Throughout, fix a prime number p and a perfect field κ of characteristic p. Write

k0 := W (κ)[1/p], and let k denote a finite extension of k0. The absolute value on k0

extends to an absolute value on k cf. [21, Appendix A, Theorem 3]. Because k0 is

discretely valued, k is discretely valued. Fix a uniformiser π ∈ k. k◦ ⊆ k is the ring

of power-bounded elements. C is the completion of a fixed algebraic closure of k.

This set-up allows any finite extension k of Qp, and in this case κ is a finite field.

If κ is an algebraic closure of Fp, then we may choose k = k0, the maximal unramified

extension of Qp.

3.2 The pro-étale site

We recall the pro-étale site associated to a smooth locally Noetherian adic space X

over Spa(k, k◦) from [54]. Regarding the theory of adic spaces, we follow the notation

given in [57, Lecture 2 and 3]. See the [54, beginning of section 3] for the definition

of locally Noetherian.

Pro (Xét) is the pro-completion of the category Xét of adic spaces which are étale

over X. The underlying topological space of “ lim − ”i∈IUi ∈ Pro (Xét) is lim −i∈I |Ui|,
where |Ui| is the underlying topological space of Ui. U ∈ Pro (Xét) is pro-étale over

X if and only if it is isomorphic to an object “ lim − ”i∈IUi such that all transition maps

Uj ! Ui are finite étale and surjective.
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The pro-étale site Xproét of X is the full subcategory of Pro (Xét) consisting of

objects which are pro-étale over X. A collection of maps {fi : Ui ! U} in Xproét is

a covering if and only if the collection {|Ui| ! |U |} is a pointwise covering of the

topological space |U |, and a second set-theoretic condition is satisfied, see [55].

ν : Xproét ! Xét is the canonical projection of sites.

(i) Let U ∈ Xproét. By [54, Lemma 4.2(iii)], lim −j≥1
ν−1O+

Xét
(U)/pj is p-adically

complete, thus it is π-adically complete. Equip it with the π-adic norm, cf.

Definition 2.1.2. This makes lim −j≥1
ν−1O+

Xét
(U)/pj a k◦-Banach algebra. It is

thus a k◦-ind-Banach algebra. The sheafification of

U 7! lim −
j≥1

ν−1O+
Xét

(U)/pj

is the completed integral structure sheaf “O+
Xproét

. It is a sheaf of k◦-ind-Banach

algebras because sheafification is strongly monoidal, cf. Lemma B.1.5.

(ii) Consider the presheaf of k-Banach algebras

U 7!

(
lim −
j≥1

ν−1O+
Xét

(U)/pj

)“⊗k◦k 2.3.6∼=

(
lim −
j≥1

ν−1O+
Xét

(U)/pj

)
[1/π].

Sheafify it as a presheaf of k-ind-Banach algebras to get the completed structure

sheaf “OXproét
. It is a sheaf of k-ind-Banach algebras by Lemma B.1.5.

Notation 3.2.1. We may write “O+ = “O+
Xproét

and “O = “OXproét
.

Recall [54, Definition 4.3]. K is a perfectoid field of characteristic zero, cf. [53, Def-

inition 3.1], containing a ring of integral elements K+ ⊆ K, cf. [57, Definition 2.2.12].

The definition of the pro-étale site still makes sense for a given locally Noetherian

adic space Y over Spa (K,K+). U ∈ Yproét is affinoid perfectoid if it is isomorphic to

“ lim − ”i∈IUi with Ui = Spa(Ri, R
+
i ) such that, denoting by R+ the p-adic completion of

lim−!i∈I R
+
i and R = R+[1/p], the pair (R,R+) is a perfectoid affinoid (K,K+)-algebra,

cf. [53, Definition 5.1(i)].

Notation 3.2.2. With the notation from the previous paragraph, Û := Spa (R,R+).

Consider again X, the smooth locally Noetherian adic space over Spa (k, k◦). U ∈
Xproét is affinoid perfectoid if the structural map U ! X factors through a pro-étale

map XK ! X such that U ∈ Xproét/XK ' XK,proét is affinoid perfectoid; see [54,

Proposition 3.15] for the canonical identification of the sites. Here, K denotes the

completion of an algebraic extension of k which is perfectoid. We further fix a ring of
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integral elements K+ ⊆ K containing k◦. We consider the pair (K,K+) as an object

V = “ lim − ”i∈IVi ∈ Spa (k, k◦)proét with Vi = Spa(Ki, K
+
i ) such that K+ is the π-adic

completion of lim−!i∈I K
+
i . The base change XK := X(K,K+) := X ×Spa(k,k◦) V is then

an object in Xproét.

The following Lemma 3.2.3 appears implicitly in [54].

Lemma 3.2.3. The affinoid perfectoids form a basis for the site Xproét.

Proof. Every finite field extension k ⊆ k′ ⊆ C induces a finite étale map Sp k′ ! Sp k

between the associated rigid-analytic spaces. Thus it induces a finite étale map be-

tween the associated adic spaces Spa (k′, k′◦)! Sp (k, k◦), cf. [37, Proposition 1.7.11].

In particular, V = “ lim − ”[k′:k]<∞ (k′, k′◦) ∈ Spa (k, k◦)proét. Set C+ := ¤�lim−![k′:k]<∞ k
′◦ ⊆

C. C is perfectoid. By the [36, remark proceeding Proposition 3.9], C+ ⊆ C is a ring

of integral elements. By construction, XC := X(C,C+) ! X is a covering. Thus every

covering of XC by affinoid perfectoids will give a covering of X by affinoid perfectoids.

Now apply [54, Corollary 4.7].

Consider the full subcategory Xproét,affperfd ⊆ Xproét of affinoid perfectoids.

Lemma 3.2.4. Xproét,affperfd is closed under fibre products.

Proof. Fix a diagram U1 ! U2  U3 of affinoid perfectoids in Xproét that lives over

a fixed perfectoid affinoid field (K,K+) of characteristic zero. Recall Notation 3.2.2.

The fibre product Û1 ×”U2
Û3 exists in the category of adic spaces and is again a

perfectoid space, see [53, Proposition 6.18]. On the other hand, U1×U2U3 is perfectoid

by [54, Lemma 4.6], and the universal property of the fibre product yields a mapŸ�U1 ×U2 U3 ! Û1 ×”U2
Û3. (3.2.1)

We claim that it is an isomorphism of adic spaces.

Write Û1 = Spa
(
R1, R

+
1

)
, Û2 = Spa

(
R2, R

+
2

)
, Û3 = Spa

(
R3, R

+
3

)
, and Û1×”U2

Û3 =

Spa(S, S+). Here S = R1“⊗R2R3 and S+ is the completion of the integral closure of the

image of R+
1 ⊗R+

2
R+

3 in S. On the other hand, write the diagram U1 ! U2  U3 above,

after suitable reindexing as explained in [44, page 54, remark 1.133], as an inverse

limit U1i ! U2i  U3i of affinoids over a small cofiltered category I. Fix notation

U1i = Spa
(
R1i, R

+
1i

)
, U2i = Spa

(
R2i, R

+
2i

)
, and U3i = Spa

(
R3i, R

+
3i

)
. Assume that all

these Huber pairs are complete. Then each U1i ×U2i
U3i exists in the category of adic

spaces, see [37, Proposition 1.2.2], and U1 ×U2 U3 = “ lim − ”iU1i ×U2i
U3i. Indeed, loc.

cit. says that U1i ×U2i
U3i = Spa(Si, S

+
i ) where Si = R1i ⊗R2i

R3i, S
+
i is the integral
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closure of R+
1i ⊗R+

2i
R+

3i in Si, and both Si and S+
i carry suitabale topologies. Now

write S∞ := lim−!i
Si and S+

∞ := lim−!i
S+
i . We turn S∞ into a Huber ring by declaring

S+
∞ to be a ring of definition, which we equip with the π-adic topology. This gives a

Huber pair (S∞, S
+
∞). To check this, we have to verify three conditions:

(i) S+
∞ ⊆ S∞ is by definition open.

(ii) S+
∞ ⊆ S◦∞ follows from [57, Proposition 2.2.10.2].

(iii) It remains to show that S+
∞ is integrally closed in S∞. To show this, consider

an element s ∈ S∞ such that there exists a monic polynomial f =
∑n

j=0 fiL
i ∈

S+
∞[L] with f(s) = 0. Pick indices l and i0, . . . , in such that s ∈ Sl and fj ∈
S+
ij

for all j = 0, . . . , n. Recall that the index category I was assumed to be

cofiltered. That is, Iop is filtered and thus we find an element t ∈ Iop together

with morphisms from l and i0, . . . , in to t. In particular, s ∈ St and f ∈ S+
t [L].

Because S+
t ⊆ St is integrally closed, s ∈ S+

t follows, and therefore s ∈ S∞.

We observe that the map (3.2.1) above is given by Spa
(Ÿ�(S∞, S+

∞)
)
! Spa(S, S+). It

is an isomorphism by construction.

Definition 3.2.5. Fix U ∈ Xproét.

(i) Xproét,affperfd/U is the full subcategory of Xproét/U whose objects are the maps

V ! U for affinoid perfectoid V . We equip it with the induced topology, and

Lemma 3.2.4 shows that it gives rise to a site.

(ii) Xfin
proét,affperfd/U is the site whose underlying category is the category underlying

Xproét,affperfd/U , but we consider only the finite coverings.

If U = X, write Xproét,affperfd := Xproét,affperfd/X and Xfin
proét,affperfd := Xfin

proét,affperfd/X.

Lemma 3.2.6. Fix a covering U ! X in Xproét. Then the morphisms of sites

Xproét Xproét,affperfd Xfin
proét,affperfd

Xproét/U Xproét,affperfd/U Xfin
proét,affperfd/U

give rise to equivalences of categories

Sh (Xproét,E) Sh (Xproét,affperfd,E) Sh
Ä
Xfin

proét,affperfd,E
ä

Sh (Xproét/U,E) Sh (Xproét,affperfd/U,E) Sh
Ä
Xfin

proét,affperfd/U,E
ä'

'

'

' '

' '
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for any elementary quasi-abelian category E.

Proof. The vertical morphism at the left-hand side is an equivalence because U ! X

is a covering. It remains to check that the horizontal arrows are equivalences. Since

the row at the top is obtained from the row at the bottom by setting U = X,

it suffices to check that the horizontal morphisms at the bottom are equivalences.

Lemma 3.2.3 gives the first equivalence Sh (Xproét/U,E) ' Sh (Xproét,affperfd/U,E).

The second equivalence Sh (Xproét,affperfd/U,E) ' Sh
(
Xfin

proét,affperfd/U,E
)

follows from

Lemma B.2.1, which applies because all affinoid perfectoids are quasicompact objects

in Xproét, cf. [54, Proposition 3.12],

Finally, we give a local description of the structure sheaves.

Lemma 3.2.7. Assume that U ∈ Xproét is affinoid perfectoid with Û = Spa(R,R+).

Equip R+ with the p-adic norm, giving R = R+[1/π] the structure of k-Banach alge-

bra. Then “O+(U) ∼= R+ and “O(U) ∼= R.

Proof. Thanks to Lemma 3.2.6, we may view “O+ and “O as sheaves on the site

Xfin
proét,affperfd. By [54, Lemma 4.10(iii)], it suffices to show that the presheaves U 7! R+

and U 7! R are sheaves.

Loc. cit. says that U 7! R is a sheaf of abstract k-algebras. The open mapping

theorem implies that it is a sheaf of k-Banach algebras, and it is a sheaf of k-ind-

Banach algebras by Lemma 2.6.2.

We know by [54, Lemma 4.10(iii)] that U 7! R+ is a sheaf of abstract k◦-algebras.

U 7! R being a sheaf of k-Banach algebras implies that U 7! R+ is a sheaf of

k◦-Banach algebras. Another application of Lemma 2.6.2 finishes the proof.

3.3 The overconvergent de Rham period ring

This subsection follows the discussion at the beginning of [54, section 6]. Our new

contribution is the definition of the overconvergent de Rham period ring. Fix the

completion K of an algebraic extension of k which is perfectoid. Pick a ring of

integral elements K+ ⊆ K containing k◦ and recall tilting, cf. [53, Lemma 3.4]. Fix

an element p[ ∈ K[ such that
(
p[
)]
/p ∈ (K+)×. Let (R,R+) denote an affinoid

perfectoid (K,K+)-algebra. Its tilt is
(
R[, R[+

)
, cf. [53, Proposition 5.17 and Lemma

6.2].
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3.3.1 Integral period rings

Ainf

(
R,R+

)
:= W

Ä
R[+

ä
,

is the relative infinitesimal period ring. Here the operator W refers to the (always

p-typical) Witt vectors. We equip Ainf (R,R+) with the
(
p,
[
p[
])

-adic seminorm, cf.

Definition 2.1.2. That is, ‖x‖ := p−v, where v ∈ N is maximal with respect to the

property that x ∈
(
p,
[
p[
])v

; ‖x‖ := 0 if x ∈
(
p,
[
p[
])v

for all v ∈ N. When the

underlying perfectoid affinoid field is understood, write Ainf := Ainf (K,K+).

Lemma 3.3.1. The underlying abstract ring of Ainf (R,R+) is a strict p-ring.

Proof. R[ is a perfectoid K[-algebra, see the discussion in [53, section 5]. Loc. cit.

Proposition 5.9 gives that R[+ is a perfect Fp-algebra and thus the lemma.

Since κ is perfect, we get the isomorphism at the left of the composition

κ ∼= lim −
Φ

κ = lim −
Φ

k◦/π ! lim −
Φ

K+/π ∼= K[+. (3.3.1)

Here, Φ denotes the Frobenii. The isomorphism at the right-hand side comes from [53,

Lemma 3.4]. This composition (3.3.1) is a morphism of rings, thus it gives a map

W (κ)! Ainf

between the associated rings of Witt vectors. We find that Ainf is a W (κ)-algebra,

and so is Ainf (R,R+). Once we equip W (κ) with the p-adic norm, Lemma 2.1.3

implies that they are both W (κ)-Banach algebras.

On the other hand, k◦ is a W (κ)-algebra and so is K+. Lemma 2.1.3 implies that

K+ is a W (κ)-Banach algebra, and so is R+. We may now follow the [26, proof of

Proposition 4.4.2] to find that Fontaine’s map

θinf : Ainf

(
R,R+

)
! R+,∑

n≥0

[an]pn 7!
∑
n≥0

a]np
n.

is a morphism of W (κ)-algebras. We will see shortly, cf. Lemma 3.3.4, that θinf is a

morphism of W (κ)-Banach algebras.

Lemma 3.3.2. There is an element ξ ∈ Ainf that generates ker θinf and is not a

zero-divisor in Ainf(R,R
+). It is of the form ξ =

[
p[
]
− ap for some unit a ∈ Ainf .
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Proof. Everything is proven in [54, Lemma 6.3], except that a is a unit. Write ξ =

(ξ0, ξ1, ξ2, . . . ) as a Witt vector. Then ξ1 is a unit in K[+, see [16, Remark 3.11]. That

is ξ =
∑

n≥0

î
ξ

1/pn

n

ó
pn, thus a = −

∑
n≥0

î
ξ

1/pn+1

n+1

ó
pn is a unit modulo p. Because Ainf

is p-adically complete, by Lemma 3.3.1, the result follows with [59, Tag 05GI].

We remark that the definition of ξ requires a choice, see [16, Remark 3.11].

Corollary 3.3.3. Ainf (R,R+) is a W (κ)-Banach algebra.

We learned the following proof from [43].

Proof of Corollary 3.3.3. We have to check that Ainf (R,R+) is complete with respect

to the
(
p,
[
p[
])

-adic topology. But
(
p,
[
p[
])

= (p, ξ), and ξ, p is a regular sequence: ξ is

not a zero-divisor, by Lemma 3.3.2, and p is not a zero-divisor in Ainf (R,R+) /ξ ∼= R+.

Thus Lemma C.0.2 applies so that it suffices to check that Ainf (R,R+) is ξ-adically

and p-adically complete. Now see the [34, proof of Proposition 15.3.4].

Corollary 3.3.4. θinf is a strict epimorphism of W (κ)-Banach algebras.

Proof. Surjectivity is clear. Lemma 3.3.2 implies
(
p,
[
p[
])

= (p, ξ) = (p) + ker θinf .

Everything follows now from the Lemmata 2.1.3 and 2.1.7.

Lemma 3.3.5. Fix an element f ∈ Ainf (R,R+). (i) If ξ divides fp then ξ divides

f . (ii) If p divides fξ then p divides f .

Proof. Let ξ divide fp. We get 0 = θinf (fp) = θinf(f)p ∈ R+. That is θinf(f) =

0, giving ξ|f and thus (i). To prove (ii), assume that p divides fξ. Consider

σ : Ainf(R,R
+) ! Ainf(R,R

+)/p ∼= R[+. Then 0 = σ(fξ) = σ(f
[
p[
]
) = σ(f)p[ ∈

R[,+. Thus σ(f) = 0, giving p|f .

Lemma 3.3.6. For every f ∈ Ainf(R,R
+), (i) ‖fξ‖ = ‖f‖p−1, (ii) ‖fp‖ = ‖f‖p−1.

Proof. First, we prove (i). The estimate ‖fξ‖ ≤ ‖f‖p−1 is clear. Recall the descrip-

tion
(
p,
[
p[
])

= (p, ξ) from Lemma 3.3.2. To show ≥, assume that f ∈ (p, ξ)v, and v is

maximal with respect to this property. Then we have to show that v is maximal with

respect to the property fξ ∈ (p, ξ)v+1. Suppose it is not, that is fξ ∈ (p, ξ)v+2. We

may write fξ =
∑v+2

i=0 fip
iξv+2−i for certain f0, . . . , fv+2 ∈ Ainf (R,R+). Then fv+2p

v+2

is divisible by ξ. Write fv+2p
v+2 = f ′v+2p

v+2ξ for some f ′v+2 with Lemma 3.3.5(i) such

that fξ =
∑v+1

i=0 fip
iξv+2−i + f ′v+2p

v+2ξ. Since ξ is not a zero-divisor, we find the

following contradiction:

f =
v+1∑
i=0

fip
iξv+1−i + f ′v+2p

v+2 ∈ (p, ξ)v+1.
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The proof of (ii) is similar, but we apply Lemma 3.3.5(ii) and use that p is not a

zero-divisor, cf. Lemma 3.3.1.

Recall Definition 2.5.1 and Notation 2.4.1.

Definition 3.3.7. For all q ∈ N, define the W (κ)-Banach algebra

Aq
dR

(
R,R+

)
:= Ainf

(
R,R+

)≠ker θinf

pq

∑
.

For q =∞, define the W (κ)-ind-Banach algebra

A∞dR

(
R,R+

)
:= Ainf

(
R,R+

)≠ker θinf

p∞

∑
= “ lim−!

q∈N
”Aq

dR

(
R,R+

)
.

Notation 3.3.8. Write A†dR (R,R+) := A∞dR (R,R+) = “ lim−! ”q∈NAq
dR (R,R+).

We highlight that Ainf (R,R+) carries the
(
p,
[
p[
])

-adic topology, which is equiv-

alent to the (p, ξ)-adic topology by Lemma 3.3.2. For example, the power series∑
α≥0 ξ

α (ζ/pq)α is an element of Ainf (R,R+) 〈ζ/pq〉α with image

∑
α≥0

ξ2α

pqα
∈ Aq

dR

(
R,R+

)
.

Lemma 3.3.9. The canonical morphisms

Ainf

(
R,R+

)≠ ξ
pq

∑
∼=
−! Aq

dR

(
R,R+

)
are isomorphisms of Ainf (R,R+)-Banach algebras for every q ∈ N. It is an isomor-

phism of Ainf (R,R+)-ind-Banach algebras for q =∞.

Proof. This follows from the Lemmata 2.5.10 and 3.3.2.

Lemma 3.3.10. θinf : Ainf (R,R+)! R+ factors through strict epimorphisms

θqdR : Aq
dR

(
R,R+

)
! R+

of W (κ)-Banach algebras for every q ∈ N. Their kernels are principal ideals generated

by ξ/pq. We exhibit a strict epimorphism

θ∞dR : A∞dR

(
R,R+

)
! R+

of W (κ)-ind-Banach algebras by passing to the colimit along q !∞.

Abusing notation, we refer to θqdR for q ∈ N ∪ {∞} again as Fontaine’s maps.
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Notation 3.3.11. Write θ†dR := θ∞dR.

Proof of Lemma 3.3.10. Fix q. Colimits preserve strict epimorphisms, cf. [14, Lemma

3.7], thus one may assume q < ∞. We get θqdR from an application of the Lem-

mata 2.5.9 and 3.3.9. The proof of loc. cit. also gives a commutative diagram

Aq
dR (R,R+)

Ainf (R,R+) R+,

θqdR

θinf

ι (3.3.2)

where ι is the canonical map. Since θinf is a strict epimorphism, cf. Lemma 3.3.4,

[52, Proposition 1.1.8] implies that θqdR is a strict epimorphism.

Now compute the kernel. Let a :=
∑

α≥0 aα (ξ/pq)α ∈ ker θqdR with coefficients

aα ∈ Ainf (R,R+) for all α ≥ 0. Since θqdR is bounded and θinf (ξ) = 0,

θqdR

(∑
α≥1

aα

Å
ξ

pq

ãα)
= 0. (3.3.3)

Furthermore,

θinf (a0)
(3.3.5)

= θqdR (ι (a0))
(3.3.3)

= θqdR (a) = 0.

Lemma 3.3.2 implies a0 = ã0ξ for some ã0 ∈ Ainf (R,R+). We find

a = a0 +
∑
α≥1

aα

Å
ξ

pq

ãα
=

ξ

pq

(
ã0p

q +
∑
α≥1

aα

Å
ξ

pq

ãα−1
)
∈
Å
ξ

pq

ã
and ker θqdR = (ξ/pq) follows.

Definition 3.3.12. Fix q ∈ N. A>q
dR (R,R+) is the completion of Aq

dR (R,R+),

equipped with the (p, ker θqdR)-adic seminorm, cf. Definition 2.1.2.

Remark 3.3.13. We think of A>q
dR (R,R+) as the functions given on an open tubular

neighbourhood U around a vanishing locus {ξ = 0}, where ξ is a generator of ker θ.

Intuitively, this neighbourhood has radius |p|q, that is U =
{
x : logp (dist (x, ξ)) > q

}
;

this explain the superscript > q.

Lemma 3.3.14. A>q
dR (R,R+) is a W (κ)-Banach algebra for all q ∈ N.

Proof. One has to check that the (p, ker θqdR)-adic completion is complete. This follows

from [59, Tag 05GG], because ker θqdR is a principal ideal by Lemma 3.3.10.
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Lemma 3.3.15. The Aq
dR (R,R+) ! Aq+1

dR (R,R+) factor canonically through the

maps Aq
dR (R,R+)! A>q

dR (R,R+). In particular, we get a canonical isomorphism

A∞dR

(
R,R+

) ∼=
−! “ lim−!

q∈N
”A>q

dR

(
R,R+

)
of W (κ)-ind-Banach algebras.

Proof. We have to check that every element in the image of (p, ker θqdR) in Aq+1
dR (R,R+)

is topologically nilpotent. By Lemma 3.3.10, it suffices to check this for p and ξ/pq.

This follows because p is already topologically nilpotent in Ainf (R,R+) and ξ/pq =

p · ξ/pq+1 ∈ Aq+1
dR (R,R+).

Remark 3.3.16. The rings A>q
dR (R,R+) are ξ/pq-adically complete, in contrast to the

Aq
dR (R,R+). This becomes useful in the proof of Theorem 3.4.2.

Lemma 3.3.17. The multiplication-by-(pqζ − ξ)-map

Ainf

(
R,R+

)
〈ζ〉! Ainf

(
R,R+

)
〈ζ〉

is a strict monomorphism for every q ∈ N≥2. Thus the (pqζ − ξ) ⊆ Ainf (R,R+) 〈ζ〉
are closed and Aq

dR (R,R+) ∼= Ainf (R,R+) 〈ζ〉 / (pqζ − ξ).

Proof. We have to check that the morphism is injective, its image is closed, and it is

open onto its image, cf. Lemma 2.1.7(iii).

To show injectivity, note that

(pqζ − ξ)
∑
α≥0

aαζ
α = 0

implies −a0ξ = 0 and −aαξ + pqaα−1 = 0 for all α ≥ 1. By induction and because ξ

is not a zero-divisor, cf. Lemma 3.3.2, this gives aα = 0 for all α, thus injectivity.

Next, we show that the ideal (pqζ−ξ) ⊆ Ainf (R,R+) 〈ζ〉 is closed. If f =
∑

n≥0 fn

is convergent in Ainf (S, S+) 〈ζ〉 with fn ∈ (pqζ − ξ) for all n ≥ 0, we can pick

gn ∈ Ainf (S, S+) 〈ζ〉 such that fn = gn (pqζ − ξ). Because q ≥ 2, p−q < p−1. Thus

‖gnpqζ‖ ≤ ‖gn‖p−q < ‖gn‖p−1.

On the other hand, Lemma 3.3.6 implies ‖gnξ‖ = ‖gn‖p−1. This gives ‖gnpqζ‖ <
‖gnξ‖, therefore [21, section 2.1, Proposition 2] applies and we find

‖fn‖ = ‖gnpqζ − gnξ‖ = max{‖gnpqζ‖, ‖gnξ‖} = ‖gn‖p−1.
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Since (fn)n≥0 is a zero-sequence, this implies that gn ! 0 for n!∞. In particular,

f =
Ä∑

n≥0 gn
ä

(pqζ − ξ) ∈ (pqζ − ξ).
Regarding openness, this follows from the following fact, which we have already

proven above: ‖g (pqζ − ξ) ‖ = ‖g‖p−q for all g ∈ Ainf (R,R+) 〈ζ〉. Indeed, this implies

that the ball of radius p−N in the image of the multiplication-by-(pqζ − ξ)-map is

contained in the image of the pall of radius p−N+q. Finally,

Aq
dR

(
R,R+

) 3.3.9∼= Ainf

(
R,R+

)≠ ξ
pq

∑
2.5.13∼= Ainf

(
R,R+

)
〈ζ〉 /(pqζ − ξ)

implies the second sentence of Lemma 3.3.17.

Lemma 3.3.18. ξ/pq ∈ Aq
dR (R,R+) is not a zero-divisor for all q ∈ N≥2.

Proof. The identification Aq
dR (R,R+) ∼= Ainf (R,R+) 〈ζ〉 / (pqζ − ξ) from Lemma 3.3.17

implies that we have to check the following: Given f =
∑

α≥0 fαζ
α ∈ Ainf (R,R+) 〈ζ〉,

ζf ∈ (pqζ − ξ)⇒ f ∈ (pqζ − ξ) . (3.3.4)

We compute that (3.3.4) holds. Let g =
∑

α≥0 gαζ
α such that

ηf = g (pqη − ξ) = −ξg0 +
∑
α≥1

(pqgα−1 − ξgα) ζα.

Since ξ is not a zero-divisor, cf. Lemma 3.3.2, g0 = 0. Proceeding by induction, we

find gα = 0 for all α ≥ 0, thus f = 0. In particular, f ∈ (pqζ − ξ).

Corollary 3.3.19. Let q ∈ N≥2. The ring A>q
dR (R,R+) is p-torsion free.

Proof. We may check that the princial symbol σ(p) ∈ grA>q
dR (R,R+) is not a zero-

divisor, where we consider the associated graded with respect to the (p, ξ/pq)-adic

filtration, cf. [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)]. To compute

the associated graded, we first notice that it is canonically isomorphic to the associated

graded of Aq
dR (R,R+), equipped with the (p, ξ/pq)-adic filtration. The sequence

p, ξ/pq ∈ Aq
dR (R,R+) is regular: ξ/pq is not a zero-divisor by Lemma 3.3.18, and the

image of p in Aq
dR (R,R+) / (ξ/pq) ∼= R+ is not a zero-divisor as well, cf. Lemma 3.3.10.

Now apply [28, Exercise 17.16.a] to get an isomorphism

grA>q
dR

(
R,R+

) ∼= grAq
dR

(
R,R+

) ∼= (R+/p
) ï
σ (p) , σ

Å
ξ

pq

ãò
,

where the principal symbols σ (p) of p and σ (ξ/pq) of ξ/pq are homogenous of degree

1. This proves Corollary 3.3.19.
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Here is a variant of Lemma 3.3.10:

Lemma 3.3.20. θinf : Ainf (R,R+)! R+ factors through strict epimorphisms

θ>qdR : A>q
dR

(
R,R+

)
! R+

of W (κ)-Banach algebras for all q ∈ N. If q ≥ 2, then their kernels are principal

ideals generated by the ξ/pq, which are furthermore non-zero divisors.

Proof. The map θ>qdR is the completion of bounded linear map

θqdR : Aq
dR

(
R,R+

)
! R+,

where Aq
dR (R,R+) carries the (p, ξ/pq)-adic topology and R+ is equipped with the

p-adic topology. In particular, we gave a commutative diagram

A>q
dR (R,R+)

Ainf (R,R+) R+,

θ>qdR

θinf

ι (3.3.5)

where ι is the canonical map. Since θinf is a strict epimorphism, cf. Lemma 3.3.4,

[52, Proposition 1.1.8] implies that θ>qdR is a strict epimorphism.

To prove the second statement, consider the sequence

0 −! A>q
dR

(
R,R+

) ξ/pq ·
−! A>q

dR

(
R,R+

) θ>qdR−! R+ −! 0

By the proof of Corollary 3.3.19, its associated graded is

0 −!
(
R+/p

) ï
σ (p) , σ

Å
ξ

pq

ãò
σ(ξ/pq)·
−!

(
R+/p

) ï
σ (p) , σ

Å
ξ

pq

ãò
gr θ>qdR−!

(
R+/p

)
[σ (p)] −! 0

It is exact, thus [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)] applies.

Here is a variant of Lemma 3.3.5(i).

Lemma 3.3.21. Fix an element f ∈ A>q
dR (R,R+), q ∈ N≥2. If ξ/pq divides fp then

ξ/pq divides f .

Proof. We get 0 = θ>qdR (fp) = θ>qdR(f)p ∈ R+. This gives θ>qdR(f) = 0, and Lemma 3.3.20

implies that ξ/pq divides f .
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3.3.2 Inverting p

Apply Lemma A.0.2 to get the seminormed k0-algebra

Binf

(
R,R+

)
:= Ainf

(
R,R+

)
⊗W (κ) k0

and the k0-Banach algebra

B̂inf

(
R,R+

)
:= Ainf

(
R,R+

)“⊗W (κ)k0.

Remark 3.3.22. Binf (R,R+) is not complete, as it does not contain
∑

n≥0 ξ
n+1/pn.

Similarly, we introduce the B̂inf (R,R+)-Banach algebras

Bq,+dR

(
R,R+

)
:= Aq

dR

(
R,R+

)“⊗W (κ)k0 and

B>q,+dR

(
R,R+

)
:= A>q

dR

(
R,R+

)“⊗W (κ)k0

for all q ∈ N. For q =∞, we have the B̂inf (R,R+)-ind-Banach algebras

B∞,+dR

(
R,R+

)
:= A∞dR

(
R,R+

)“⊗W (κ)k0 = A†dR

(
R,R+

)“⊗W (κ)k0,

cf. Notation 3.3.8. Write B†,+dR (R,R+) := B∞,+dR (R,R+) and note that

B†,+dR

(
R,R+

)
= “ lim−!

q∈N
”BqdR

(
R,R+

)
.

Definition 3.3.23. The B̂inf (R,R+)-ind-Banach algebra B†,+dR (R,R+) is the relative

positive overconvergent de Rham period ring. Whenever (R,R+) = (K,K+) is a

well-understood perfectoid field, we refer to B†,+dR := B†.+dR (K,K+) as the positive

overconvergent de Rham period ring.

Lemma 3.3.24. The morphisms

B̂inf

(
R,R+

)≠ ξ
pq

∑
∼=
−! Bq,+dR

(
R,R+

)
are isomorphisms of B̂inf (R,R+)-Banach algebras for every q ∈ N. They are a iso-

morphisms of B̂inf (R,R+)-ind-Banach algebras for q =∞.

Proof. We may assume q <∞ without loss of generality. Compute

B̂inf

(
R,R+

)≠ ξ
pq

∑
= coker

Ç
B̂inf

(
R,R+

)≠ ζ
pq

∑
ξ−pq ζ

pq

−! B̂inf

(
R,R+

)≠ ζ
pq

∑å
∼= coker

Ç
Ainf

(
R,R+

)≠ ζ
pq

∑
ξ−pq ζ

pq

−! Ainf

(
R,R+

)≠ ζ
pq

∑å“⊗W (κ)k0

∼= Ainf

(
R,R+

)≠ ξ
pq

∑“⊗W (κ)k0

∼= Bq,+dR

(
R,R+

)
,
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where we have used Lemma 3.3.9 in the last step.

Recall Fontaine’s maps θinf , θ
q
dR for all q ∈ N, and θ†dR. They induce morphisms

ϑ̂inf : B̂inf

(
R,R+

) θinf“⊗W (κ) idk0−! R+“⊗W (κ)k0

∼=
−!R

ϑq,+dR : Bq,+dR

(
R,R+

) θqdR
“⊗W (κ) idk0−! R+“⊗W (κ)k0

∼=
−!R,

ϑ†,+dR : B+
dR

(
R,R+

) θ†dR
“⊗W (κ) idk0−! R+“⊗W (κ)k0

∼=
−!R

of k0-Banach, respectively k0-ind-Banach algebras. We refer to them again as Fontaine’s

maps.

Lemma 3.3.25. The maps ϑ̂inf , ϑ
q,+
dR , and ϑ†,+dR , are strict epimorphisms.

Proof. We have to check that the maps θinf“⊗W (κ) idk0 , θq,+dR
“⊗W (κ) idk0 , and θ†,+dR

“⊗W (κ) idk0

are strict epimorphisms. But the completed tensor product preserves strict epimor-

phisms, cf. [14, Lemma 3.7]. Now apply Corollary 3.3.4 and Lemma 3.3.10.

3.3.3 Inverting t, Fontaine’s 2πi

Assume that K admits a compatible system 1, ζp, ζp2 , . . . of primitive pth power roots

of unity, that is ζppn+1 = ζpn for all n ∈ N. We fix such a system. Since each ζpn satisfies

the monic polynomial Lp
n−1 ∈ L+[X] and K+ is integrally closed, it follows that this

system {ζpn}n∈N lies in K+. Thus we have ε := (1, ζp, ζp2 , . . . ) ∈ K[+. Furthermore,

θ(ε− 1) = 1− 1 = 0. (3.3.6)

Write A1
dR := A1

dR (K,K+).

Definition 3.3.26. The computation (3.3.6) allows us to define

t := log([ε]) = log(1 + ([ε]− 1)) =
∑
α≥1

(−1)α+1 ([ε]− 1)α

α

=
∑
α≥1

(−1)α+1p
α

α

Å
[ε]− 1

p

ãα
∈ A1

dR.

Here, we are using that α divides pα in n in Zp.

Notation 3.3.27. Introduce the following W (κ)-ind-Banach algebra

“ lim−!
t×

”A1
dR := “ lim−! ”

Ä
· · · t×
−! A1

dR
t×
−! A1

dR
t×
−! . . .

ä
.
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The multiplication is

“ lim−!
t×

”A1
dR
“⊗W (κ)“ lim−!

t×
”A1

dR
∼= “ lim−!

2t×
”A1

dR
“⊗W (κ)A

1
dR

“ lim−! ”2t×µ

−! “ lim−!
2t×

”A1
dR
∼= “ lim−!

t×
”A1

dR

where µ is the multiplication on A1
dR. The unit is induced by the unit W (κ)! A1

dR.

Recall Notation 2.3.1 and define, for all q ∈ N, the k0-ind-Banach algebras

BqdR

(
R,R+

)
:= Bq,+dR

(
R,R+

)“⊗A1
dR

“ lim−!
t×

”A1
dR and

B>qdR

(
R,R+

)
:= B>q,+dR

(
R,R+

)“⊗A1
dR

“ lim−!
t×

”A1
dR.

For q =∞, we define

B∞dR

(
R,R+

)
:= B∞,+dR

(
R,R+

)“⊗A1
dR

“ lim−!
t×

”A1
dR

= B†,+dR

(
R,R+

)“⊗A1
dR

“ lim−!
t×

”A1
dR

Write B†dR (R,R+) := B∞dR (R,R+).

Definition 3.3.28. B†dR (R,R+) is the relative overconvergent de Rham period ring.

When (R,R+) = (K,K+) is a well-understood perfectoid field, we refer to B†dR :=

B†dR (K,K+) as the overconvergent de Rham period ring.

The previous definitions depend a priori on the choice of ε.

Lemma 3.3.29. Fix another choice ε′ ∈ K[+ of a compatible system of primitive pth

power roots of unity. Then there exists a unique unit u ∈ Ainf such that ([ε] − 1) =

u ([ε′]− 1). Writing t′ := log ([ε′]), u induces an isomorphism

“ lim−!
t×

”A1
dR
∼= “ lim−!

t′×
”A1

dR. (3.3.7)

As a consequence, the definitions of BqdR (R,R+) and B>qdR (R,R+) for all q ∈ N as

well as B†dR (R,R+) are independent of the choice of ε.

Proof. Write µ := [ε] − 1 and µ′ := [ε′] − 1. The ideals (µ) = (µ′) ⊆ Ainf coincide

by [16, Lemma 3.23]. Proposition 3.17(ii) loc. cit. furthermore says that µ and µ′

are non-zero-divisors, thus there exists a unit u such that µ = uµ′. Using again that

µ and µ′ are non-zero-divisors, one deduces that u is unique with respect to that

property. Next, note that α + 1 divides pα in Zp and define

v :=
∑
α≥0

(−1)α
pα

α + 1

Å
µ

p

ãα
∈ A1

dR,
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satisfying t = vµ. Note that v ≡ 1 mod ξ/p, which is a unit. Since A1
dR is complete

with respect to the ξ/p-adic topology, cf. Lemma 3.3.9 and Proposition 2.5.11, [59,

Tag 05GI] implies that v is a unit. Similarly, write t′ = µ′v′ for some unit v′ ∈
A1

dR. In particular, t = (vuv′) t′. Then vuv′ is again a unit, giving rise to the

isomorphism (3.3.7).

The previous definitions depend a priori on the choice of (K,K+).

Lemma 3.3.30. Suppose (R,R+) is an affinoid perfectoid (K,K+)-algebra, as well

as an affinoid perfectoid (L,L+). Then, for all q ∈ N,

Bq,+dR

(
R,R+

)“⊗A1
dR(K,K+)“ lim−!

tK×
”A1

dR

(
K,K+

)
∼= Bq,+dR

(
R,R+

)“⊗A1
dR(L,L+)“ lim−!

tL×
”A1

dR

(
L,L+

)
and

B>q,+dR

(
R,R+

)“⊗A1
dR(K,K+)“ lim−!

tK×
”A1

dR

(
K,K+

)
∼= B>q,+dR

(
R,R+

)“⊗A1
dR(L,L+)“ lim−!

tL×
”A1

dR

(
L,L+

)
.

This implies

B†,+dR

(
R,R+

)“⊗A1
dR(K,K+)“ lim−!

tK×
”A1

dR

(
K,K+

)
∼= B†,+dR

(
R,R+

)“⊗A1
dR(L,L+)“ lim−!

tL×
”A1

dR

(
L,L+

)
.

Both tK ∈ A1
dR (K,K+) and tL ∈ A1

dR (L,L+) are given as t in Definition 3.3.26.

Proof. C denotes an algebraically closed field, complete with respect to a non-trivial,

non-Archimedean valuation. Fix embeddings K,L ↪! C and compute

Bq,+dR

(
R,R+

)“⊗A1
dR(K,K+)“ lim−!

tK×
”A1

dR

(
K,K+

)
∼= “ lim−!

tK×
”Bq,+dR

(
R,R+

)
∼= Bq,+dR

(
R,R+

)“⊗A1
dR(C,C+)“ lim−!

tK×
”A1

dR

(
C,C+

)
.

This is in fact an isomorphism of k-ind-Banach algebras. We do this computation

again but over the base L to get

Bq,+dR

(
R,R+

)“⊗A1
dR(L,L+)“ lim−!

tL×
”A1

dR

(
L,L+

)
∼= “ lim−!

tL×
”Bq,+dR

(
R,R+

)
∼= Bq,+dR

(
R,R+

)“⊗A1
dR(C,C+)“ lim−!

tL×
”A1

dR

(
C,C+

)
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Similar computations work for B>q,+dR . Now apply Lemma 3.3.29. Compute the colimit

along q !∞ to get the result for B†,+dR .

3.4 The overconvergent de Rham period sheaf

Fix a locally Noetherian adic space X over Spa(k, k◦). The constructions in the

previous section 3.3 are functorial, in the following sense. For an affinoid perfectoid

U ∈ Xproét with Û = Spa (R,R+), Proposition 3.2.7 gives (R,R+) =
Ä“O(U), “O+(U)

ä
.

Thus on Xfin
proét,affperfd and for all q ∈ N, we get the presheaves

Apsh
inf : U 7! Ainf

Ä“O(U), “O+(U)
ä
,

Aq,psh
dR : U 7! Aq

dR

Ä“O(U), “O+(U)
ä
, and

A>q,psh
dR : U 7! A>q

dR

Ä“O(U), “O+(U)
ä

of W (κ)-Banach algebras,

A∞,psh
dR : U 7! A†dR

Ä“O(U), “O+(U)
ä

of W (κ)-ind-Banach algebras,

B̂
psh

inf : U 7! B̂inf

Ä“O(U), “O+(U)
ä
,

Bq,+,psh
dR : U 7! Bq,+dR

Ä“O(U), “O+(U)
ä
, and

B>q,+,psh
dR : U 7! B>q,+dR

Ä“O(U), “O+(U)
ä

of k0-Banach algebras, and

B∞,+,psh
dR : U 7! B†,+dR

Ä“O(U), “O+(U)
ä

of k0-ind-Banach algebras. Write A†,psh
dR := A∞,psh

dR and B†,+,psh
dR := B∞,+,psh

dR .

Since k◦ does not contain a compatible system of pth power roots of unity, the

element t does not exist on the whole site Xfin
proét,affperfd. Therefore we pass to the

completion C of the algebraic closure we have fixed in section 3.1. Consider a cov-

ering of the form XC ! X in Xproét; the construction is identical to the one in the

proof of Lemma 3.2.3. On the localised site Xproét/XC , we have an element t as in

Definition 3.3.26. This depends on a choice of ε ∈ K[+. On Xfin
proét,affperfd/XC , we then

get the presheaves

Bq,psh
dR : U 7! BqdR

Ä“O(U), “O+(U)
ä
,

B>q,psh
dR : U 7! B>qdR

Ä“O(U), “O+(U)
ä
, and

B∞,psh
dR : U 7! BdR

Ä“O(U), “O+(U)
ä
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of k0-ind-Banach algebras. Write B†,psh
dR := B∞,psh

dR .

We view all the presheaves of Banach algebras above as presheaves of ind-Banach

algebras, cf. Lemma 2.6.2. Now sheafification is allowed: Denote the sheafifications

of all the presheaves above by Ainf , Aq
dR, A†dR, B̂inf , Bq,+dR , B>q,+dR , B†,+dR , BqdR, B>qdR,

and B†dR, for q ∈ N ∪ {∞}, respectively. Since sheafification is strongly monoidal,

see Lemma B.1.5, all of these sheaves are sheaves of W (κ)-ind-Banach algebras and

k0-ind-Banach algebras, respectively. By Lemma 3.2.6, these extend to sheaves of

ind-Banach algebras on the pro-étale site Xproét.

Definition 3.4.1. B†,+dR is the positive overconvergent de Rham period sheaf. B†dR is

the overconvergent de Rham period sheaf.

Theorem 3.4.2. Fix a symbol

X ∈
¶
Ainf ,A>q

dR,A
†
dR, B̂inf ,B>q,+dR ,B†,+dR

©
for q ∈ N≥2, together with an affinoid perfectoid U ∈ Xproét. Let Û = Spa (R,R+),

where (R,R+) denotes an affinoid perfectoid algebra over an affinoid perfectoid field

(K,K+). Then the canonical morphism

X
(
R,R+

) ∼=
−! X(U)

is an isomorphism of W (κ)-ind-Banach-algebras and k0-ind-Banach algebras, respec-

tively. If K contains a compatible system of primitive pth roots of unity, then we get

the following isomorphisms of k0-ind-Banach algebras:

B>qdR

(
R,R+

) ∼= B>qdR (U) and

B†dR

(
R,R+

) ∼= B†dR (U) .

Remark 3.4.3. Theorem 3.4.2 also holds for X ∈
{
Bq,+dR ,B

q
dR

}
and q ∈ N≥2. We do not

know whether Aq
dR (R,R+)! Aq

dR(U) is an isomorphism for finite q. However, we do

know that it is an almost isomorphism, where the almost setup is chosen as in [54,

Theorem 6.5]. We omit the proofs of these facts, as these results are not needed in

the remainder of this text.

We need the following Lemma 3.4.4 in order to prove Theorem 3.4.2. All filtrations

are descending.

Lemma 3.4.4. Consider a strictly exact sequence

M• : 0 −!M ′ d′
−!M

d
−!M ′′
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of filtered abelian groups. Assume that M ′′/FilsM ′′ has no p-power torsion for all s ≥
0. Equip each N ∈ {M ′,M,M ′′} with the topology given by the open neighbourhood

basis

{psN + FilsN}s≥0 .

Then M• is strictly exact as a complex of topological abelian groups.

Proof. Since M• is strictly exact as a complex of filtered abelian groups,

M•,s : 0 −!
M ′

FilsM ′
d′,s
−!

M

FilsM

ds
−!

M ′′

FilsM ′′

is exact for every s ≥ 0. Now equip every N s ∈
¶

M ′

FilsM ′
, M

FilsM
, M ′′

FilsM ′′

©
with the p-adic

filtration, that is

FillN s := plN s for all l ∈ N.

Then M•,s is strictly exact. This follows from the observation

d′,s
Å
pl

M ′

FilsM ′

ã
= pld′,s

Å
M ′

FilsM ′

ã
= pl ker ds

for all l ∈ N. The last step of this computation used that M ′′/FilsM ′′ has no p-power

torsion. This implies that the complexes

0 −!
M ′

FilsM ′

¡
ps −!

M

FilsM

¡
ps −!

M ′′

FilsM ′′

¡
ps

are exact for all s ≥ 0. But these complexes are isomorphic to

0 −!
M ′

psM ′ + FilsM ′ −!
M

psM + FilsM
−!

M ′′

psM ′′ + FilsM ′′ .

This implies

d′ (psM ′ + FilsM ′) = d′ (M ′) ∩ (psM + FilsM) .

That is, M• is strictly exact as a complex of topological abelian groups.

Proof of Theorem 3.4.2. It suffices to check

(i) Ainf (R,R+)
∼=
−! Ainf (U),

(ii) A>q
dR (R,R+)

∼=
−! A>q

dR (U),

and, if K contains a compatible system of pth roots of unity,

(iii) B>qdR (R,R+)
∼=
−! B>qdR (U).
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This follows from Corollary 2.2.2 and Lemma 3.3.15, as well as Lemma B.1.2, applied

to the Corollaries 2.3.5 and 2.3.7. Note that these results apply, because Ainf (R,R+)

and A>q
dR (R,R+) are p-torsion free, cf. Lemma 3.3.1 and Corollary 3.3.19; here we

are using that q ≥ 2.

We check that Apsh
inf , A>q,psh

dR , and B>q,psh
dR are sheaves.

(i) By Lemma 2.6.2, it suffices to show that Apsh
inf is a sheaf of W (κ)-Banach alge-

bras. We are working on the site Xfin
proét,affperfd, thus we have to show for every

finite covering {Ui ! U}i that the complex

0 −! Apsh
inf (U) −!

∏
i

Apsh
inf (Ui) −!

∏
i,j

Apsh
inf (Ui ×U Uj) (3.4.1)

of W (κ)-Banach spaces is strictly exact 1. Since the products are finite, both∏
iA

psh
inf (Ui) and

∏
i,j A

psh
inf (Ui ×U Uj) are again W (κ)-Banach spaces. In fact,

they carry the
(
p,
[
p[
])

= (p, ξ)-adic topologies. Now Lemma 3.4.4 applies,

because of Lemma 3.3.5(i), and it implies the following: It suffices to check that

the complex (3.4.1) above is strictly exact, where the abelian groups Apsh
inf (U),∏

iA
psh
inf (Ui), and

∏
i,j A

psh
inf (Ui ×U Uj) carry the ξ-adic filtrations, that is

Filn := (ξ)n for all n ∈ N.

This would follow once we computed that the associated graded complex is

exact, cf. [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)]. This is

allowed because Apsh
inf (U),

∏
iA

psh
inf (Ui), and

∏
i,j A

psh
inf (Ui ×U Uj) are ξ-adically

complete. Indeed, the products are finite and every Apsh
inf (V ) is complete for

every affinoid perfectoid V , cf. the proof of Lemma 3.3.3. By Lemma 3.3.2

and [28, Exercise 17.16.a], the associated graded of the complex (3.4.1) is

0 −! “O+(U) [σ (ξ)] −!
∏
i

“O+ (Ui) [σ (ξ)]

−!
∏
i,j

“O+ (Ui ×U Uj) [σ (ξ)] ,

which is exact by [54, Lemma 4.10]; σ (ξ) denotes the principal symbol of ξ.

The proof of (ii) is almost identical to the proof of (i).

1It has been shown in [54, Theorem 6.5(i)] that the underlying complex of abstract W (κ)-algebras
is exact. However, the proof given loc. cit. does not establish strictness.
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(ii) It suffices to show that A>q,psh
dR is a sheaf ofW (κ)-Banach algebras, see Lemma 2.6.2.

We are working on the site Xfin
proét,affperfd, thus we have to show for every finite

covering {Ui ! U}i that the complex

0 −! A>q,psh
dR (U) −!

∏
i

A>q,psh
dR (Ui) −!

∏
i,j

A>q,psh
dR (Ui ×U Uj) (3.4.2)

of W (κ)-Banach spaces is strictly exact. Since the products are finite, both∏
iA

>q,psh
dR (Ui) and

∏
i,j A

>q,psh
dR (Ui ×U Uj) are again W (κ)-Banach spaces. In

fact, they carry the (p, ξ/pq)-adic topologies, Now Lemma 3.4.4 applies, because

of Lemma 3.3.21, and it implies the following: It suffices to check that the

complex (3.4.2) above is strictly exact, where the abelian groups A>q,psh
dR (U),∏

iA
>q,psh
dR (Ui), and

∏
i,j A

>q,psh
dR (Ui ×U Uj) carry the ξ/pq-adic filtrations:

Filn :=

Å
ξ

pq

ãn
for all n ∈ N.

This would follow once we computed that the associated graded complex is

exact, cf. [38, Chapter I, subsection 4.2 page 31-32, Theorem 4(5)]. This

is allowed because A>q,psh
dR (U),

∏
iA

>q,psh
dR (Ui), and

∏
i,j A

>q,psh
dR (Ui ×U Uj) are

ξ/pq-adically complete. Indeed, the products are finite and every A>q,psh
dR (V ) is

complete for every affinoid perfectoid V , cf. [59, Tag 090T]. By Lemma 3.3.20

and [28, Exercise 17.16.a], the associated graded of the complex (3.4.1) is

0 −! “O+(U)

ï
σ

Å
ξ

pq

ãò
−!

∏
i

“O+ (Ui)

ï
σ

Å
ξ

pq

ãò
−!

∏
i,j

“O+ (Ui ×U Uj)
ï
σ

Å
ξ

pq

ãò
,

which is exact by [54, Lemma 4.10]; σ (ξ/pq) denotes the principal symbol

of ξ/pq. The assumption q ≥ 2 is used in the application of Lemma 3.3.18

and 3.3.20.

(iii) Let ε′ ∈ K[+ denote a fixed compatible system of primity pth roots of unity. By

Lemma 3.3.29, we can safely assume ε′ = ε, the compatible system fixed earlier

on in this subsection. We have also fixed the completion C of an algebraic

closure of k, for which we fix an embedding k ↪! C. Furthermore, there is the

canonical isomorphism of k0-ind-Banach algebras

B>qdR (V ) ∼= “ lim−!
tK×

”B>q,+dR (V )

∼= B>q,+dR

(
R,R+

)“⊗A1
dR(C,C+)“ lim−!

tK×
”A1

dR

(
C,C+

)
.

(3.4.3)
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for any affinoid perfectoid V ∈ Xproét/XC ; here we applied Corollary 2.3.5,

using (ii) and the strict exactness of filtered colimits. Now compute, given the

covering UC = U ×Spa(K,K+) Spa (C,C+)! U ,

B>qdR (U)

∼= ker
(
B>qdR (UC)! B>qdR (UC ×U UC)

)
3.4.3∼= ker

Ö
B>q,+dR (UC)“⊗A1

dR(C,C+)“ lim−!
tK×

”A1
dR

(
C,C+

)
! B>q,+dR (UC ×U UC)“⊗A1

dR(C,C+)“ lim−!
tK×

”A1
dR

(
C,C+

)
è

3.3.30
= ker

Ö
B>q,+dR (UC)“⊗A1

dR(K,K+)“ lim−!
tK×

”A1
dR

(
K,K+

)
! B>q,+dR (UC ×U UC)“⊗A1

dR(K,K+)“ lim−!
tK×

”A1
dR

(
K,K+

)
è

∼= ker
(
B>q,+dR (UC)! B>q,+dR (UC ×U UC)

)“⊗A1
dR(K,K+)“ lim−!

tK×
”A1

dR

(
K,K+

)
∼= B>q,+dR (U)“⊗A1

dR(K,K+)“ lim−!
tK×

”A1
dR

(
K,K+

)
(ii)∼= B>q,+dR

(
R,R+

)“⊗A1
dR(K,K+)“ lim−!

tK×
”A1

dR

(
K,K+

)
= B>qdR

(
R,R+

)
This finishes the proof of Theorem 3.4.2.

3.5 The overconvergent de Rham period structure

sheaf

Keep the notation from subsection 3.4 fixed. X denotes again a locally Noetherian

adic space over Spa(k, k◦).

For every q ∈ N ∪ {∞}, we introduce the presheaves k-ind-Banach algebras

OBq,+,psh
dR : U = “ lim −

i∈I
”U 7! “ lim−!

i∈I
”
(
O+(Ui)“⊗W (κ)Ainf(U)

)≠kerOθinf

pq

∑“⊗k◦k
on Xfin

proét,affperfd. Here, Oθinf denotes the composition of the surjections

O+(Ui)“⊗W (κ)Ainf(U)
id“⊗θinf−! O+(Ui)“⊗W (κ)

“O+(U)
µ+

−! “O+(U),

where µ+ denotes the multiplication. O+(Ui) carries the π-adic seminorm.
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Remark 3.5.1. The kernels of the maps Oθinf are finitely generated. This follows from

Lemma 3.3.10 and because the kernel of µ+ is finitely generated. Now Lemma 2.5.10

allows to give a more concrete definition of OBq,+,psh
dR (U).

Since sheafification is strongly monoidal, cf. Lemma B.1.5, the sheafifications

OBq,+dR ofOBq,+,psh
dR are sheaves of k-ind-Banach algebras. They extend, by Lemma 3.2.6,

to sheaves on the whole pro-étale site, which we denote again by OBq,+dR .

Use Lemma 2.6.2 to view the structure sheaf O on X as a sheaf of k-ind-Banach

algebras. The canonical morphisms

ν−1O“⊗k0 B
q,+
dR ! OB

q,+
dR

are morphisms of sheaves of k-ind-Banach algebras, cf. Lemma B.1.5. This makes

OBq,+dR a sheaf of ν−1O-ind-Banach algebras, and a sheaf of Bq,+dR -ind-Banach algebras.

The maps Oθinf induce morphisms

Oϑq,+dR : OBq,+dR !
“O

of sheaves of k-ind-Banach spaces for every q ∈ N∪{∞}, by Lemma 2.5.9 and B.1.5.

Definition 3.5.2. OB†,+dR := OB∞,+dR is the positive overconvergent de Rham period

structure sheaf.

Again, q ∈ N ∪ {∞}. C denotes the completion of an algebraic extension of k

that we have fixed in of section 3.1. C+ ⊆ C is a fixed ring of integral elements.

The element t ∈ A1
dR := A1

dR (C,C+) has been introduced in Definition 3.3.26. Recall

Notation 3.3.27 and define the following sheaf of k-ind-Banach spaces on Xproét/XC :

OBqdR := OBq,+dR
“⊗A1

dR
“ lim−!

t×
”A1

dR.

By Lemma 3.2.6, OBqdR extends to a sheaf on the pro-étale site, which we denote

again by OBqdR.

Definition 3.5.3. OB†dR := OB∞dR is the overconvergent de Rham period structure

sheaf.

We aim to describe the period structure sheaves locally, in the spirit of [54, Propo-

sition 6.10]. Assume thatX is affinoid and equipped with an étale mapX ! Td := Td0.

Here we define, for all e ∈ N,

Tde := Spa
Ä
k
¨
T
±1/pe

1 , . . . , T
±1/pe

d

∂
, k◦
¨
T
±1/pe

1 , . . . , T
±1/pe

d

∂ä
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Write T̃
d

:= “ lim −e∈N ”Tde ∈ Tdproét and ‹X := X ×Td T̃
d
. Every U = “ lim −i∈I ”Ui ∈

Xproét/‹X gives rise to a morphism U ! ‹X ! T̃
d

in Pro
(
Tdproét

)
. It is thus given by

a compatible system of étale maps Ui0 ! Tde for a fixed i0 ∈ I and varying e.

Notation 3.5.4. Fix such an i0 ∈ I.

Consider the images of the elements T1, . . . , Td ∈ O+
(
Tde
)

in O+ (Ui) for all i ≥ i0

and e large enough. Abusing notation, denote them again by T1, . . . , Td.

ul := Tl“⊗1− 1“⊗ îT [l ó ∈ O+(Ui)“⊗W (κ)Ainf(U) (3.5.1)

for all l = 1, . . . , d, every U = “ lim −i∈I ”Ui ∈ Xproét,affperfd/‹X, and i ≥ i0. Here

T [l :=
Ä
Tl, T

1/p
l , T

1/p2

l , . . .
ä
∈
Ä“O+(U)

ä[
.

Since those ul lie in the kernel of Oθinf , the canonical maps

Aq
dR(U)!

(
O+(Ui)“⊗W (κ)Ainf(U)

)≠kerϑ

pq

∑
extend with Corollary 2.4.11 to the morphisms

Aq
dR(U)

≠
Z1, . . . , Zd

pq

∑
!
(
O+(Ui)“⊗W (κ)Ainf(U)

)≠kerϑ

pq

∑
, Zl/p

q 7! ul/p
q

of Aq
dR(U)-Banach algebras for every q ∈ N. Here, the Zl denote formal variables 2.

Invert p and pass to the colimit along i ∈ I to get

Φq,+(U) : Bq,+dR (U)

≠
Z1, . . . , Zd

pq

∑
! OBq,+,psh

dR (U).

The data of these maps Φq,+
dR (U) define morphisms

Φq,+,psh : Bq,+dR |‹X ≠Z1, . . . , Zd
pq

∑psh

! OBq,+,psh
dR |‹X

of presheaves of Bq,+dR |‹X-ind-Banach algebras on Xproét/‹X, where

Bq,+dR |‹X ≠Z1, . . . , Zd
pq

∑psh

: V 7! Bq,+dR (V )

≠
Z1, . . . , Zd

pq

∑
.

By Lemma B.1.5, its sheafification

Φq,+ : Bq,+dR |‹X ≠Z1, . . . , Zd
pq

∑
! OBq,+dR |‹X

2[54] denotes Zl as Xl. We use different symbols to avoid confusion with the space X.
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is a morphism of sheaves of Bq,+dR |‹X-ind-Banach algebras. Here,

Bq,+dR |‹X ≠Z1, . . . , Zd
pq

∑
:=

Ç
Bq,+dR |‹X ≠Z1, . . . , Zd

pq

∑psh
åsh

.

Now pass to the colimit along q !∞ to obtain the morphism

Φ†,+ : B†,+dR |‹X ≠Z1, . . . , Zd
p∞

∑
! OB†,+dR |‹X ,

of sheaves of B+
dR |‹X-ind-Banach algebras. Finally, using the notation in the paragraph

following Definition 3.5.2,

Φ†C :=
(

Φ†,+|‹XC“⊗A1
dR

id“ lim−!t×
”A1

dR

)sh

.

This is a morphism of sheaves of BdR |‹XC -ind-Banach algebras on Xproét/‹XC , cf.

Lemma B.1.5. By Lemma 3.2.6, there exists a unique morphism Φ† with Φ†|‹XC = Φ†C .

Write

Φ† : B†dR |‹X ≠Z1, . . . , Zd
p∞

∑
! OB†dR |‹X .

B†dR |‹X ¨Z1,...,Zd
p∞

∂
is the sheafification of the presheaf whose restriction to ‹XC is

U 7! B†,+dR (U)

≠
Z1, . . . , Zd

p∞

∑“⊗A1
dR

“ lim−!
t×

”A1
dR
∼= B†dR(U)

≠
Z1, . . . , Zd

p∞

∑
.

Theorem 3.5.5. Let X be affinoid and equipped with an étale map X ! Td, giving

rise to the pro-étale covering ‹X ! X. Then the morphism

Φ†,+ : B†,+dR |‹X ≠Z1, . . . , Zd
p∞

∑
∼=
−! OB†,+dR |‹X

is an isomorphism of sheaves of B†,+dR |‹X-ind-Banach algebras, and

Φ† : B†dR |‹X ≠Z1, . . . , Zd
p∞

∑
∼=
−! OB†dR |‹X

is an isomorphism of sheaves of B†dR |‹X-ind-Banach algebras.

Remark 3.5.6. Theorem 3.5.5 implies its version [54, Proposition 6.10] for OB+
dR via

taking t-adic completions, locally on the pro-étale site.

We prove Theorem 3.5.5 in subsection 3.6.
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Corollary 3.5.7. Let X be affinoid and equipped with an étale map X ! Td, giving

rise to the pro-étale covering ‹X ! X. The morphism

B†,+dR

(
R,R+

)≠Z1, . . . , Zd
p∞

∑
∼=
−! OB†,+dR (U)

Zl 7−! ul

of B†,+dR (R,R+)-ind-Banach algebras is an isomorphism for any affinoid perfectoid

U ∈ Xproét/‹X with Û = Spa (R,R+). If further U ∈ Xproét/‹XK for a perfectoid field

K containing a compatible sequence of primitive pth roots of unity, then

B†dR

(
R,R+

)≠Z1, . . . , Zd
p∞

∑
∼=
−! OB†dR(U),

Zl 7−! ul.

Proof. It suffices to check that

U 7! B†,+dR

Ä“O(U), “O+(U)
ä≠Z1, . . . , Zd

p∞

∑
(3.5.2)

is a sheaf on Xfin
proét,affperfd. Indeed, then we can apply the Theorems 3.4.2 and 3.5.5.

But the sheafiness of (3.5.2) follows from Theorem 3.4.2 together with Lemma B.1.2,

which applies because of Corollary 2.4.16.

Remark 3.5.8. Write OB†,+,psh
dR := OB∞,+,psh

dR . Then, for any U ∈ Xproét/‹X,

OB†,+,psh
dR (U) ∼= B†,psh

dR (U)

≠
Z1, . . . , Zd

p∞

∑
∼= B†dR(U)

≠
Z1, . . . , Zd

p∞

∑
∼= OB†,+dR (U)

by the proofs of Theorem 3.5.5 and Corollary 3.5.7.

3.6 Proof of Theorem 3.5.5

Fix the setup as described in Theorem 3.5.5. It suffices to check that Φ†,+dR is an

isomorphism. We may show that the maps

Φ†,+,psh
dR (U) : B†,+dR (U)

≠
Z1, . . . , Zd

p∞

∑
! OB†,+,psh

dR (U)

are isomorphisms for every affinoid perfectoid U ∈ Xproét/‹X. Fix such a U with

Û = Spa (R,R+), together with a pro-étale presentation U = “ lim −i∈I ”Ui ∈ Xproét/‹X,

Ui = Spa
(
Ri, R

+
i

)
for all i ∈ I. Let i ≥ i0 be arbitrary, cf. Notation 3.5.4. We will

show that the morphism

φi : B†,+dR

(
R,R+

)≠Z1, . . . , Zd
p∞

∑
!
(
O+(Ui)“⊗W (κ)Ainf(U)

)≠kerOθinf

p∞

∑“⊗k◦k (3.6.1)

is an isomorphism. This suffices because Φ†,+,psh
dR (U) = lim−!i≥i0

φi.
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Lemma 3.6.1. The assignment Tl 7! [T [l ] + Zl defines a unique morphism

ε̃+i : R+
i ! Ainf(R,R

+)JZ1, . . . , ZdK.

of W (κ)-algebras. It fits into the commutative diagram

R+
i Ainf(R,R

+)JX1, . . . , XdK

R+,

ε̃+i

Oθ′inf
(3.6.2)

where Oθ′inf is the map
∑

α∈Nd aαX
α 7! θ (a0).

In order to prove Lemma 3.6.1, we cite the following multidimensional version of

Hensel’s Lemma from [24, Corollary 4.5.2].

Lemma 3.6.2. Fix a commutative, linearly topologised, Hausdorff and complete ring

A, as well as a closed ideal m ⊆ A, whose elements are topologically nilpotent. Let

f = (f1, . . . , fn) denote a tuple of polyomials in A[L] in variables L = (L1, . . . , Ln)

and let Jf (L) ∈ A[L] denote the Jacobian, that is the determinant of the matrixÅ
∂f

∂L

ã
:=

Å
∂fi
∂Lj

ã
i,j=1,...,n

.

Consider a ∈ An such that Jf (a) is invertible in A and fi(a) ≡ 0 mod m for all

i = 1, . . . , n. Then there exists a unique x ∈ An such that xi ≡ ai mod m for all i

and fi(x) = 0 for all i = 1, . . . , n.

We closely follow the [54, proof of Proposition 6.10].

Proof of Lemma 3.6.1. Pick a finitely generatedW (κ)
[
T±1

1 , . . . , T±1
d

]
-algebraR+

i0 whose

p-adic completion isR+
i such thatRi0 = R+

i0[1/p] is étale overW (κ) [1/p]
[
T±1

1 , . . . , T±1
d

]
,

see [54, Lemma 6.12]. This gives a finite presentation

Ri0 =
(
W (κ) [1/p]

[
T±1

1 , . . . , T±1
d

])
[Li1, . . . , Lini ] / (Pi1, . . . , Pini)

such that the Jacobian JP (L) is a unit in Ri0. Here we used multi-index notation

L := (Li1, . . . , Lini) and P := (Pi1, . . . , Pini), omitting the index i for clarity. Without

loss of generality, we can assume that

(i) Lij ∈ R+
i0 for every j = 1, . . . , ni,

(ii) Pij ∈ W (κ)
[
T±1

1 , . . . , T±1
d

]
[Li1, . . . , Lini ] for every j = 1, . . . , ni, and
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(iii) the Jacobian JP (L) ∈ R+
i0 is invertible.

Here is why:

(i) Because Ri0 = R+
i0 [1/p], there exists an s ∈ N such that L+

ij := psLij ∈ R+
i0 for

all j = 1, . . . , ni. Indeed, we have

Ri0 =
(
W (κ) [1/p]

[
T±1

1 , . . . , T±1
d

]) [
L+
i1, . . . , L

+
ini

]
/ (Pi1, . . . , Pini) .

Write L+ :=
(
L+
i1, . . . , L

+
ini

)
, omitting again the subscript i. We claim that the

Jacobian JP (L+) is still a unit in Ri0. The chain rule yields

JP (L) = det

ÅÅ
∂P

∂L

ãã
= det

ÅÅ
∂P

∂L+

ã
·
Å
∂L+

∂L

ãã
= det

ÅÅ
∂P

∂L+

ãã
det

ÅÅ
∂L+

∂L

ãã
.

JP (L) is a unit by assumption and

det

ÅÅ
∂L+

∂L

ãã
= det (psIni) = pnis

is a unit in Ri0. Thus det
((

∂P
∂L+

))
is a unit in Ri0 too, as desired.

(ii) We have to multiply each Pij by a suitable power of p. Note that this multiplies

JP (L) by a power of p, such that the Jacobian is still a unit in Ri0.

(iii) Multiply each Pij with an appropriate power of p such that J(L) becomes

invertible in R+
i0. Note that this does not affect the assumptions (i) and (ii)

above.

Assume (i), (ii), and (iii) without loss of generality. The
[
T [l
]

+ Zl are invertible in

Ainf (R,R+) JZ1, . . . , ZdK, with inverses
∑

n≥0(−1)n
[
T [l
]−n−1

Zn
l . Therefore, we have

a morphism

W (κ)
[
T±1

1 , . . . T±1
d

]
! Ainf

(
R,R+

)
JZ1, . . . , ZdK (3.6.3)

of W (κ)-algebras sending Tl to
[
T [l
]
+Zl for all l = 1, . . . , d. Let P ′ij denote the image

of the polynomial Pij under the map

W (κ)[T±1
1 , . . . , T±1

d ][Li1, . . . , Lini ]! Ainf(R,R
+)JZ1, . . . , ZdK[Li1, . . . , Lini ]

induced by 3.6.3. We summarise the setup and compare it to Lemma 3.6.2.
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• Equip A := Ainf (R,R+) JZ1, . . . , ZdK with the (p, ξ, Z1, . . . , Zd)-adic topology.

Apply Proposition C.0.1 to Corollary 3.3.3 and find that this defines a commu-

tative, linearly topologised, Hausdorff, and complete ring.

• The ideal m := (ξ, Z1, . . . , Zd) is closed. Indeed, it is the kernel of the map

A = Ainf

(
R,R+

)
JZ1, . . . , ZdK! R+,

∑
α∈Nd

aαZ
α 7! θinf (a0) ,

which is continuous. Here, R+ carries the p-adic topology. The elements of m

are topologically nilpotent because its generators are.

• We have polynomials P ′i1, . . . , P
′
ini

in Ainf(R,R
+)JZ1, . . . , ZdK [Li1, . . . , Lini ]. They

correspond to the elements fj in Lemma 3.6.2.

• We have Ainf(R,R
+)JZ1, . . . , ZdK/m

∼=
−! R+. Since R+

i0 ⊆ R+, one can pick lifts

L′ij ∈ Ainf(R,R
+)JX1, . . . , XdK of the elements Li1, . . . , Lin ∈ R+

i0. Write L′ =

(L′i1, . . . , L
′
in), omitting the index i for clarity. Then the Jacobian JP ′ (L

′) is a lift

of JP (L) ∈ R+
i0. Since the latter is a unit, [59, Tag 05GI] implies that the lift is a

unit. Here we have used that Ainf (R,R+) JZ1, . . . , ZdK is complete with respect

to the m-adic topology. This follows from Lemma [59, Tag 090T], because

Ainf (R,R+) JZ1, . . . , ZdK is complete with respect to the (p, ξ, Z1, . . . , Zd)-adic

topology, as explained above.

• We have P ′+ij (L′+ij ) ≡ Pij(Lij) ≡ 0 modulo m for every j = 1, . . . , ni.

Thus one can apply Hensel’s Lemma 3.6.2. We find a unique tuple L̃ =
Ä
L̃i1, . . . , L̃in

ä
with entries in Ainf(R,R

+)JZ1, . . . , ZdK such that Pij
Ä
L̃ij
ä

= 0 and L̃ij ≡ L′ij modulo

m for all j = 1, . . . ni. Now define the map

ε̃+i0 : R+
i0 ! Ainf(R,R

+)JZ1, . . . , ZdK

of W (κ)
[
T±1 , . . . , T

±
d

]
-algebras by Lij 7! L̃ij for all j = 1, . . . , ni. Ainf (R,R+) is

p-adically complete by Lemma 3.3.1, thus Ainf (R,R+) JZ1, . . . , ZdK is p-adically com-

plete by Lemma C.0.3. Therefore, ε̃+i0 extends to the desired morphism ε̃+i by con-

tinuity. Here we have used that R+
i is p-adically complete, which can be seen with

arguments similar to the ones at the [12, end of the proof of Lemma 3.6.1].

The uniqueness follows from the following: ε̃+i is determined by its restriction to

R+
i0, and this restriction is unique by Hensel’s Lemma 3.6.2.
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Finally, we get the commutative diagram (3.6.2) from the computations

Oθ′inf(ε̃
+
i (Lij)) = Oθ′inf

Ä
L̃ij
ä

= Oθ′inf

(
L′ij
)

= Lij

for all j = 1, . . . , ni.

Notation 3.6.3. Introduce the following bounded linear map

ε+i : R+
i

ε̃+i−! Ainf

(
R,R+

)
JZ1, . . . , ZdK−!Ainf

(
R,R+

)∑
α∈Nd

aαZ
α 7−!a0.

The map ε+i gives Ainf (R,R+) the structure of an R+
i -Banach algebra and εi :=

ε+i “⊗W (κ)k0 makes B̂inf (R,R+) an Ri-Banach algebra. We want exhibit φi as a base-

change of a certain τi along εi, following the proof of the local description of OB+
dR [55].

Notation 3.6.4. Denote the multiplication R+
i
“⊗W (κ)R

+
i ! R+

i by µ+
i .

Lemma 3.6.5.

G+ :=
Ä
idR+

i

“⊗W (κ)ε
+
i

ä (
kerµ+

i

)
∪
{

1“⊗ξ} ⊆ R+
i
“⊗W (κ)Ainf

(
R,R+

)
generates the ideal kerOθinf .

Proof. Drop the subscripts W (κ) for clarity. Oθinf is the composition

R+
i
“⊗Ainf

(
R,R+

) id“⊗θinf−! R+
i
“⊗R+ µ+

−! R+,

where µ+ is the multiplication. Clearly, 1“⊗ξ ∈ kerOθinf . For every g ∈ kerµ+
i ,

Oθinf

ÄÄ
idR+

i

“⊗ε+i ä (g)
ä

=
Ä
µ ◦
Ä
idR+

i

“⊗θinf

ä
◦
Ä
idR+

i

“⊗ε+i ää (g)

=
Ä
µ ◦
Ä
idR+

i

“⊗ (θinf ◦ ε+i
)ää

(g)

3.6.1
=
Ä
µ ◦
Ä
idR+

i

“⊗ι+i ää (g)

= 0,

(3.6.4)

where ι+i : R+
i ! R+ is the canonical map. This proves (G) ⊆ kerOθinf . We aim to

show ⊇ via computing that Oθinf induces an isomorphism(
R+
i
“⊗Ainf

(
R,R+

))/
(G)

∼=
−! R+.

By the third isomorphism theorem, this breaks into two parts. First,(
R+
i
“⊗Ainf

(
R,R+

))/(
1“⊗ξ) ∼=

−! R+
i
“⊗R+; (3.6.5)
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this isomorphism is induced by idR+
i

“⊗Oθinf . Second, µ+ induces(
R+
i
“⊗R+

)¿ÄÄ
idR+

i

“⊗θinf

ä ÄÄ
idR+

i

“⊗ε+i ä (kerµ+
i

)ää ∼=
−! R+. (3.6.6)

The first isomorphism comes from the strictly coexact sequence

Ainf

(
R,R+

) ξ
−! Ainf

(
R,R+

)
−! R+ −! 0,

cf. Lemma 3.3.2 and Corollary 3.3.4. Indeed, applying R+
i
“⊗W (κ) gives the sequence

R+
i
“⊗Ainf

(
R,R+

) ξ
−! R+

i
“⊗Ainf

(
R,R+

)
−! R+

i
“⊗R+ −! 0,

which is strictly coexact. This gives (3.6.5). Regarding the second isomorphism (3.6.6),ÄÄ
idR+

i

“⊗θinf

ä ÄÄ
idR+

i

“⊗ε+i ä (kerµ+
i

)ää
=
Ä
idR+

i

“⊗ι+i ä (kerµ+
i

)
,

by the computation 3.6.4 above. We may thus write (3.6.6) as(
R+
i
“⊗R+

)¿ÄÄ
idR+

i

“⊗ι+i ä (kerµ+
i

)ä ∼=
−! R+. (3.6.7)

We claim that the image of kerµ+
i ⊆ A := R+

i
“⊗R+

i in B := R+
i
“⊗R+ generates the

kernel of the multiplication map as an ideal. Apply [2, Theorem 4.1.4] to get an exact

sequence of finitely presented A-modules

An −! A
µ+
i−! R+

i −! 0.

Apply the functor −“⊗AB to get an exact sequence of finitely presented B-modules

Bn −! B
µ+
i
“⊗A idB
−! R+

i
“⊗AB −! 0.

The functors −“⊗R+
i
R and −“⊗AB are isomorphic on finitely generated A-modules.

This is because both are suitably right exact, and both send A to B, up to natural

isomorphism. Hence we get the exact sequence

Bn −! B
υ+

−! R+
i
“⊗R+

i
R+ ∼= R+ −! 0.

One the other hand, µ+ : B ! R+ kills the image of An in B, giving a complex

Bn −! B
µ+

−! R+ −! 0.

One checks that this complex is equal to the previous exact sequence: the only non-

trivial part is to show that µ+ and υ+ coincide. But υ+ is the composition

R+
i
“⊗R+ = B A“⊗AB R+

i
“⊗AB R+

i

r“⊗s (
r“⊗1

)“⊗ (1“⊗s) r“⊗ (1“⊗s) rs,

∼= µ+
i
“⊗AB ∼=

which shows the claim. It follows that the image of kerµ+
i ⊆ A in B generates the

multiplication map. This gives (3.6.7).
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We use Lemma 3.6.6 without further reference.

Lemma 3.6.6. Ri is an affinoid k-algebra.

Proof. The étale map Ui ! Td induces an étale morphism k
〈
T±1 , . . . , T

±
d

〉
! Ri of

Huber rings. Now apply [37, Proposition 1.7.1(iii) and Corollary 1.7.2(ii)].

Lemma 3.6.7. Let A denote a k0-affinoid algebra and fix a finite set of elements

s1, . . . , sn ∈ A. Set I := (g1, . . . , gn) and consider

ωq : A

≠
s1, . . . , sn

pq

∑
! lim −

l

A/I l

for all q ∈ N. Then the kerωq are Banach spaces and lim−!q
kerωq = 0 as a k0-ind-

Banach space.

Proof. Write Iq := A
〈
s1,...,sn
πq

〉
I. Then

A
〈s1, . . . , sn

πq

〉
/I lq

∼=
−! A/I l

for all l, thus the kernel of ωq is the intersection of the ideals I lq. But any ideal in an

affinoid algebra is closed, see for example [22, section 6.1.1 Proposition 3]. Therefore

kerωq is closed, thus complete. In particular, we may view it as a Banach space with

the restriction of the norm on A
〈
s1,...,sn
πq

〉
.

By the Krull intersection theorem, there exists an element f ∈ Iq such that

(1− f) kerωm = (1− f)
⋂
l

I lq = 0.

Now consider the commutative diagram

A
〈
ζ1,...,ζn
πq

〉
A
〈
s1,...,sn
πq

〉
A
¨
ζ1,...,ζn
πq′

∂
A
¨
s1,...,sn
πq′

∂υq

ι̃q,q′ ιq,q′

υq
′

for any q′ ≥ q, where the horizontal maps send each ζi to si. Pick f̃ such that

υq
Ä
f̃
ä

= f . Since f ∈ Iq, we may assume that f̃ ∈ (ζ1, . . . , ζn). In particular,

‖ιq,q′(f)‖ ≤ ‖τ q′
Ä
ι̃q,q′

Ä
f̃
ää
‖ ≤ ‖ι̃q,q′

Ä
f̃
ä
‖ ≤ |π|q′−q‖f̃‖.

That is, we may chose q′ large enough such that ‖ιq,q′(f)‖ ≤ 1. But then ιq,q′ (1− f)

becomes a unit: its inverse is
∑

α≥0 ιq,q′ (f)α. Thus ιq,q′ (kerωq) is killed by a unit,

thus it is zero. In other words, kerωq ⊆ ker ιq,q
′
. It follows that

lim−!
q≥0

kerωq ⊆ lim−!
q′≥q≥0

ker ιq,q′ = ker lim−!
q′≥q≥0

ιq,q′ = 0.
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But ι := lim−!m′≥m≥0
ιq,q′ is by definition an automorphism of lim−!m≥0

A
〈
s1,...,sn
πq

〉
, thus

ker ι = 0. This implies lim−!q≥0
kerωq = 0, as desired.

Notation 3.6.8. Denote the multiplication Ri“⊗k0Ri ! Ri by µi.

Proposition 3.6.9. Fix generators (s1, . . . , sn) = kerµi. We have an isomorphism

τi : Ri

≠
Z1, . . . , Zd

p∞

∑
∼=
−!

(
Ri“⊗k0Ri

)≠s1, . . . , sn
p∞

∑
extending r 7! 1“⊗r and sending Zl to Tl“⊗1− 1“⊗Tl of k-ind-Banach algebras.

Proof. By [42, Lemma 2.3] the canonical morphism(
Ri“⊗k0Ri

)≠s1, . . . , sn
p∞

∑
∼=
−!

(
Ri“⊗k0Ri

)
U

is an isomorphism of k-ind-Banach algebras. Here, the colimit on the left runs through

the system of affinoid open neighbourhoods U ⊇ ∆ (Sp (Ri)) and (−)U denotes the

corresponding localisation. In particular, the constructions in the [58, proof of Propo-

sition 6.31] apply. Loc. cit. constructs a morphism 3

σi :
(
Ri“⊗k0Ri

)≠s1, . . . , sn
p∞

∑
−! Ri

≠
Z1, . . . , Zd

p∞

∑
,

such that σi ◦ τi is the identity. [52, Proposition 1.1.8] implies that σi is a strict

epimorphism, thus it remains to check that it is a monomorphism. To do this, we

apply Lemma 3.6.7 for A := Ri“⊗k0Ri and I := kerµi. Loc. cit. considers the

morphism ωi, which fit into the following commutative diagrams:(
Ri“⊗k0Ri

) ¨
s1,...,sn
pq

∂
Ri

¨
Z1,...,Zd
p∞

∂
lim −j

(
Ri“⊗k0Ri

)
/ (kerµi)

j Ri JZ1, . . . , ZdK .

τqi

ωqi

∼=

(3.6.8)

The morphisms τ qi at the top are the compositions(
Ri“⊗k0Ri

)≠s1, . . . , sn
pq

∑
−!

(
Ri“⊗k0Ri

)≠s1, . . . , sn
p∞

∑
σi−! Ri

≠
Z1, . . . , Zd

p∞

∑
,

and the isomorphism at the bottom of the commutative diagram comes from [58,

Lemma B.7 and Corollary B.10]. The commutative diagram (3.6.8) implies ker τ qi =

kerωqi . Together with the aforementioned Lemma 3.6.7, we find

ker τi = lim−!
q

ker τi = lim−!
q

kerωqi = 0,

as desired.
3[58] denotes σi by ψ and τi by ϕ.
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Proof of Theorem 3.5.5. As explained at the beginning of this subsection 3.6, it suf-

fices to check that the morphism (3.6.1) is an isomorphism.

Recall that B†,+dR (R,R+) is an Ri-Banach algebra via εi, cf. Notation 3.6.3. See

Proposition 3.6.9 for τi and write ψi := idB†,+dR (R,R+)
“⊗Riτi. We claim

φi ∼= ψi.

Because ψi is an isomorphism, this would imply that φi is an isomorphism.

Step 1. The domain of ψi coincides with the domain of φi:

B†,+dR

(
R,R+

)“⊗RiRi

≠
Z1, . . . , Zd

p∞

∑
2.4.7∼= B†,+dR

(
R,R+

)≠Z1, . . . , Zd
p∞

∑
.

Step 2. We compute the codomain of ψi. Recall the generating set G+ of kerOθinf

considered in Lemma 3.6.5. Additionally, fix a generating set S of kerµ+
i . By [2,

Theorem 4.1.4], we may assume that S = {s1, . . . , sn} is finite. Define

G :=
(
idRi “⊗k0εi

)
(s1, . . . , sn) ∪

{
1“⊗ξ} ⊆ Ri“⊗k0B̂inf

(
R,R+

)
and compute, for every q ∈ N,

Bq,+dR

(
R,R+

)“⊗Ri (Ri“⊗k0Ri

)≠ S
pq

∑
3.3.24∼= coker

Å
B̂inf

(
R,R+

)≠ ζ
pq

∑Å
pq
ζ

pq
− ξ
ã
! B̂inf

(
R,R+

)≠ ζ
pq

∑ã
“⊗Ri coker

á n⊕
j=1

(
Ri“⊗k0Ri

)≠ ζs
pq

: s ∈ S
∑Å

pq
ζsj
pq
− sj

ã
!
(
Ri“⊗k0Ri

)≠ ζs
pq

: s ∈ S
∑ë

∼= coker

á⊕
g∈G

Ä
Ri“⊗k0B̂inf

(
R,R+

)ä≠ζg
pq

: g ∈ G
∑Å

pq
ζg
pq
− g
ã

!
Ä
Ri“⊗k0B̂inf

(
R,R+

)ä≠ζg
pq

: g ∈ G
∑ë

∼= coker

á⊕
g∈G+

(
R+
i
“⊗W (κ)Ainf

(
R,R+

))≠ζf
pq

: g ∈ G+

∑Å
pq
ζg
pq
− g
ã

!
(
R+
i
“⊗W (κ)Ainf

(
R,R+

))≠ζg
pq

: g ∈ G+

∑ë“⊗W (κ)k0

=
(
R+
i
“⊗W (κ)Ainf

(
R,R+

))≠G+

pq

∑“⊗W (κ)k0

2.5.10∼=
(
R+
i
“⊗W (κ)Ainf

(
R,R+

))≠kerOθinf

pq

∑“⊗W (κ)k0.
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Now pass to the colimit along q !∞ to see that φi and ψi have the same codomain:

B†,+dR

(
R,R+

)“⊗Ri (Ri“⊗k0Ri

)≠ S

p∞

∑
∼=
(
R+
i
“⊗W (κ)Ainf

(
R,R+

))≠kerOθinf

p∞

∑“⊗W (κ)k0.

Step 3. Both φi and ψi are colimits of completed localisations of morphisms

Aq
dR

(
R,R+

)≠Z1, . . . , Zd
pq

∑
!
(
R+
i
“⊗W (κ)Ainf(U)

)≠kerOθinf

pq

∑
of Aq

dR (R,R+)-Banach algebras, q ∈ N. Therefore, it suffices to check that both φi

and ψi coincide on the variables Z1, . . . , Zd. This is an easy computation:

φi (Zl) = Tl“⊗W (κ)1− 1“⊗W (κ)

î
T [l
ó
, and

ψi (Zl) =
Ä
idR+

i

“⊗W (κ)ε
+
i

ä
(τi (Zl))

=
Ä
idR+

i

“⊗W (κ)ε
+
i

ä (
Tl“⊗W (κ)1− 1“⊗W (κ)Tl

)
= Tl“⊗W (κ)1− 1“⊗W (κ)

î
T [l
ó

for all l = 1, . . . , d.
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Chapter 4

Differential operators meet p-adic
Hodge theory

Fix the notation introduced in subsection 3.1.

4.1 Infinite order differential operators on rigid-

analytic spaces

X denotes a smooth rigid-analytic k-variety. We recall the construction of the sheafÙD on X. Our main reference is [7]. Xw denotes the category whose objects are the

affinoid subdomains of X and whose morphisms are the inclusions, carrying the weak

Grothendieck topology. The d-dimensional torus over k is

Td := Sp
(
k
〈
T±1 , . . . , T

±
d

〉)
.

First, we assume that X = SpA is affinoid and equipped with an étale morphism

g : X ! Td. Compute the A-module of k-linear differentials of A:

L := Derk(A) =
d⊕
l=1

A∂l,

where ∂l denotes the lift of the canonical vector field d/dTl along the étale map

g# : O
(
Td
)

= k
〈
T±1 , . . . , T

±
d

〉
! O (X). These ∂l do not need to preserve A :=

O(X)◦ in general. But because they are bounded, see [4, Lemma 3.1], we can find

rg ≥ 1 large enough such that the πr∂l preserve A for every r ≥ rg. Define the

A-submodule

L :=
d⊕
l=1

A∂l ⊆ L.

Lr := prL is an A-Lie lattice for every r ≥ rg, that is [Lr,Lr] ⊆ Lr and Lr(A) ⊆ A.
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Remark 4.1.1. A priori, it seems more natural to define Lr to be πrL. However, we

choose p over π because it simplifies the proof of Theorem 4.2.1.

We cite the following from [7, section 3]. Fix r ≥ rg. Denote the pullback

O(X) ! O(U) by ω. An admissible k◦-algebra is a commutative k◦-algebra which

is topologically of finite type and flat over k◦. An affine formal model in O(U) is an

admissible k◦-algebra B such that O(U) ∼= B ⊗k◦ k. B is Lr-stable if ω(A) ⊆ B and

the action of Lr on A lifts to B. U is Lr-admissible if it admits an Lr-stable affine

formal model. Xr = Xg,r := Xw (Lr) denotes the full subcategory of Xw consisting

of the Lr-admissible affinoid subdomains. It is a site by [7, Subsection 3.2, Lemma].

The coverings are the finite admissible coverings by objects in Xr.

Definition 4.1.2. [7, Section 3.3, Definition] Let X be affinoid and equipped with an

étale morphism g : X ! Td. Fix r ≥ rg. For any Lr-admissible affinoid subdomain

U ⊆ X and any Lr-stable affine formal model B in O(U), define

Dr(U) = Dg,r(U) := ¤�U (B ⊗A Lr)⊗k◦ k.

The symbol U refers to the enveloping algebra of B⊗ALr as a (k◦,B)-algebra, see [7,

subsection 2.1]. The completion is the π-adic one.

Regard Dr(U) as a k-Banach algebra with unit ball ¤�U (B ⊗A Lt).

Lemma 4.1.3. Let X be affinoid and equipped with an étale morphism g : X ! Td.
Fix r ≥ rg. The assignment

U 7! Dr(U)

defines a sheaf of k-Banach algebras on Xr.

Proof. See [7, section 3.5, Theorem] and apply the open mapping theorem.

Definition 4.1.4. [7, Section 9.3, Definition] X is affinoid and it admits an étale

morphism X ! Td. For every U ∈ Xw, define the k-ind-Banach algebraÙD (U) := lim −Dg,r(U),

cf. Lemma A.0.5. The inverse limits runs over all étale maps g : X ! Td and r large

enough such that U ∈ Xr.

Lemma 4.1.5. X is affinoid and admits an étale morphism X ! Td. Then

0! ÙD (X)!
∏
j

ÙD (Uj)!
∏
j1,j2

ÙD (Uj1 ×U Uj2)

is strictly exact for any finite covering {Uj ! X}j by affinoids.
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Proof. This follows from Lemma 4.1.3.

Definition 4.1.6. Let X be an arbitrary smooth rigid-analytic k-variety. By abuse

of notation, ÙD denotes the unique sheaf of k-ind-Banach algebras such that for every

U ∈ Xw admitting an étale map U ! Td, ÙD (U) is given as in Definition 4.1.4.

Lemma 4.1.7. Suppose X is affinoid and equipped with a fixed étale morphism

g : X ! Td. Then the canonical morphism ÙD (U)
∼=
−! lim −r≥rg

Dg,r (U) is an iso-

morphism for any affinoid subdomain U ⊆ X.

Proof. This follows from [7, section 6.1, Lemma, (b)].

See [7, section 8 and 9] for the definition of the category of coadmissible ÙD-modules

as a full subcategory of abstract ÙD-modules. [18] realised it as a full subcategory

of the category of sheaves of complete bornological ÙD-modules, and thus as a full

subcategory of the category of sheaves of ÙD-ind-Banach modules. We are interested

in a derived analog. Recall that every quasi-abelian category has a derived category,

cf. [52, section 1.2]. See also loc. cit. section 1.3 on derivation of functors.

Definition 4.1.8. Consider a closed monoidal quasi-abelian category E, admitting

a ring object R. Then the category of R-modules is again quasi-abelian, cf. [52,

Proposition 1.5.1.], thus it admits a derived category D (R). The category Db
perf (R) of

bounded perfect complexes of R-modules is the smallest full triangulated subcategory

of D (R) which contains R, and is closed under direct summands and isomorphisms.

A bounded perfect complex of R-modules is an object of Db
perf (R).

Definition 4.1.9. [18, Section 6] An object M• in the derived category of sheaves

of ÙD-ind-Banach modules is a C-complex if there exists an admissible covering of X

by affinoids Xi equipped with étale morphisms gi : Xi ! Tdi such that, for each i,

(i) M•
r := Dgi,r“⊗LÙD |Xi,rM•|Xi,r is a bounded perfect complex of sheaves of Dgi,r-

ind-Banach modules for every r ≥ rgi , and

(ii) Hj (M•)
∼=
−! lim −r≥rgi

Hj (M•
r) for every j ∈ Z.

DC
ÄÙDä ⊆ DC

ÄÙDä denotes the full triangulated subcategory of C-complexes.

Remark 4.1.10. We remind the reader that the cohomology of a complex N • ∈ D
ÄÙDä

is not an object of the category Mod
ÄÙDä but its left heart, cf. [52, section 1.2.2].

Remark 4.1.11. [18, Section 6] requires eachM•
r to be a bounded complex of coherent

Dgi,r-modules, but we require it to be a bounded perfect complex. Both definitions

are equivalent by the main result of [20].
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4.2 The bimodule structure on OB†dR

We continue to fix a smooth rigid-analytic k-variety X. Every affinoid k-algebra is

strongly Noetherian, cf. [57, Theorem 3.1.8.3] and [22, section 6.1.1, Proposition 3],

thus the adic space Xad associated to X is locally Noetherian. This allows to define

Xproét :=
(
Xad

)
proét

, the pro-étale site of X. The morphism of sites ν is

Xproét =
(
Xad

)
proét

ν
−!

(
Xad

)
ét
−! X.

See [37, section 2.1] for the definition of the morphism at the right-hand side.

The term module always refers to a left module. We view ν−1 ÙD as a sheaf of k-ind-

Banach algebras and ν−1O as a sheaf of ν−1 ÙD-ind-Banach modules, cf. Lemma B.1.6.

This makes ν−1O“⊗k0 B
†,+
dR a ν−1 ÙD“⊗k0 B

†,+
dR -module object. Since B†,+dR is commutative,

it is in fact a ν−1 ÙD-B†,+dR -bimodule object, cf. Definition A.0.3.

Theorem 4.2.1. There exists a ν−1 ÙD-B†,+dR -bimodule structure on OB†,+dR such that

the canonical morphism

ν−1O“⊗k0 B
†,+
dR ! OB

†,+
dR (4.2.1)

is a morphism of ν−1 ÙD-B†,+dR -bimodule objects. It is unique.

Remark 4.2.2. Here is an overview of the proof of Theorem 4.2.1. We give a lo-

cal construction of the bimodule action. Assume that X is affinoid and equipped

with an étale morphism X ! Td. We have the elements ∂1, . . . , ∂d ∈ ÙD(X). Cf.

Theorem 3.5.5, OB†,+dR has the sections Z1, . . . , Zd, locally on the proétale site.

∂j · Zl :=
d

dZj
(Zl) = δjl

defines the action of ν−1 ÙD, where δjl is the Kronecker delta. A large part of the

proof concerns showing that this action is compatible with the canonical B†,+dR -module

structure. Finally, we use that (4.2.1) is an epimorphism to show uniqueness.

Proof of Theorem 4.2.1. Corollary A.0.4 and the Lemma 4.2.3 imply uniqueness.

Lemma 4.2.3. The morphism (4.2.1) is an epimorphism.

Proof. For every q ∈ N, U = “ lim −i∈I ”Ui ∈ Xproét, and i ∈ I,

O+ (Ui)“⊗W (κ)Aq
dR(U)!

(
O+ (Ui)“⊗W (κ)Ainf(U)

)≠kerOθinf

pq

∑
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has dense image. It is an epimorphism by Lemma 2.1.7(ii).

“ lim−!
i∈I

”O (Ui)“⊗k0 B
†,+
dR (U)! OB†,+dR (U)

is an epimorphism because colimits preserve epimorphisms. Now sheafify and apply

Lemma B.1.3(iii) and B.1.5, to find that (4.2.1) is an epimorphism.

It remains to construct the bimodule structure. We may work locally, as the

uniqueness of the bimodule structures ensures they will glue. Therefore, we can

assume that X is affinoid and equipped with an étale morphism g : X ! Td.‹X ! X is the pro-étale covering as in Theorem 3.5.5. Let U ∈ Xproét/‹X. One can

assume that U is affinoid perfectoid by Lemma 3.2.6. We aim to give OB†,+dR (U) the

structure of a ν−1 ÙD(U)-B†,+dR (U)-bimodule object, functorially in U . This is equivalent

to giving OB†,+dR (U) the structure of a ÙD(V )-B†,+dR (U)-bimodule object for every V ∈
Xw with U ! ν−1 (V ), functorial in U and V . By Corollary 3.5.7,

OB†,+dR (U) ∼= B†,+dR (U)

≠
Z1, . . . , Zd

p∞

∑
2.4.7∼= lim−!

q∈N
Aq

dR (U)

≠
Z1, . . . , Zd

pq

∑“⊗W (κ)k0.

Apply Lemma 4.1.7 to getÙD(V ) ∼= lim −
r≥rg
Dg,r (V ) = lim −

r≥rg

¤�U (B ⊗A Lr)⊗k◦ k

2.3.2∼= lim −
r≥rg

¤�U (B ⊗A Lr) [1/p]
2.3.6∼= lim −

r≥rg

¤�U (B ⊗A Lr)“⊗W (κ)k0.

A is an affine formal model in O(X), L :=
⊕d

l=1A∂l where ∂l denotes the lift of

the canonical vector field d/dTl along the étale map g# : O
(
Td
)

= k
〈
T±1 , . . . , T

±
d

〉
!

O (X), Lr := prL, and B is an Lr-stable affine formal model in O(V ). Assume that

r is sufficiently large, such that V ⊆ X is Lr-admissible. This is possible by [7,

section 6.1, Lemma (b)]. We construct ¤�U (B ⊗A Lr)-Aq
dR(U)-bimodule structures on

Aq
dR (U)

¨
Z1,...,Zd

pq

∂
for r, q ∈ N large enough with q ≤ r, such that the following holds.

Condition 4.2.4.

(i) For all r′ ≥ r, the following diagrams commute:(¤�U (B ⊗A Lr)“⊗W (κ)Aq
dR(U)

)“⊗W (κ)Aq
dR (U)

¨
Z1,...,Zd

pq

∂
Aq

dR (U)
¨
Z1,...,Zd

pq

∂
(¤�U (B ⊗A Lr′)“⊗W (κ)Aq

dR(U)
)“⊗W (κ)Aq

dR (U)
¨
Z1,...,Zd

pq

∂
Aq

dR (U)
¨
Z1,...,Zd

pq

∂
.

Here, the horizontal maps denote the bimodule structures.

66



(ii) For all q′ ≥ q, the following diagrams commute:

W (κ) Aq′

dR (U)
¨
Z1,...,Zd
pq′

∂
W (κ) Aq

dR (U)
¨
Z1,...,Zd

pq

∂
Here, the horizontal maps denote the unit maps.

Once these bimodule structures are constructed, invert p to get a Dg,r(V ) −
Bq,+dR (U)-bimodule structure on Bq,+dR (U)

¨
Z1,...,Zd

pq

∂
. Lemma A.0.7 applies because of

Condition 4.2.4, giving the desired ÙD(V )-B†,+dR (U)-bimodule structure on OB†,+dR (U).

Simplify notation: O := O(V )◦, Lr := B ⊗A Lr, Aq := Aq
dR (U), and OAq :=

Aq
dR (U)

¨
Z1,...,Zd

pq

∂
. We explained above that we aim to construct a ÷U (Lr)-A

q-bimodule

structure on OAq. This is equivalent to giving a morphism÷U (Lr)! HomAq (OAq, OAq) (4.2.2)

of W (κ)-Banach algebras. We also explained that the morphism has to be suitably

functorial in V and U . This will be obvious from the construction. Thus we choose

to omit both U and V in the simplified notation.

View Lr together with the canonical anchor map σ : Lr ! Derk◦ (O) as a (k◦, O)-

Lie-algebra, cf. [7, section 2.1]. We construct (4.2.2) via the universal property of the

completed enveloping algebra. Without loss of generality, q ∈ N≥1. Write

jO : O ! HomAq (OAq, OAq) ,

f 7! (h 7! ε̃ (f)h) ,

where ε̃ denotes the map constructed in Lemma 3.6.1, but we omit the index i. Indeed,

the image of ε̃ lies in Ainf (R,R+) JZ1, . . . , ZdK ⊆ OAq because q ≥ 1. Next,

jLr : Lr ! HomAq (OAq, OAq) ,

d∑
l=1

flp
r∂l 7!

d∑
l=1

ε̃ (fl) p
r d

dZl

is well-defined because q ≤ r. Indeed, compute for every l = 1, . . . , d and α ∈ Nd,

jLr (pr∂l)

ÅÅ
Z

pq

ãαã
= pr

d

dZl

ÅÅ
Z

pq

ãαã
=
pr

pq
αl

Å
Z

p(q−1)

ãαl−1 ÅZ
pq

ãα−αlel
∈ OAq,
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where el = (0, . . . , 1, . . . , 0) denotes the lth unit vector. Then one shows directly

that jLr (pr∂l) defines a bounded linear map OAq ! OAq. To exploit the universal

property of U (Lr), the following has to be checked:

Condition 4.2.5.

(a) jO is a homomorphism of k◦-algebras.

(b) jLr is an O-Lie algebra homomorphism.

(c) For all f ∈ O and P ∈ Lr, jLr(fP ) = jO (f) jLr(P ).

(d) For all f ∈ O and P ∈ Lr, [jLr(P ), jO(f)] = jO (σ(P )(f)).

By [7, section 2.1], this would indeed give a continuous map

U (Lr)! HomAq (OAq, OAq)

of W (κ)-algebras. It would extend by continuity to the desired morphism (4.2.2).

Conditions 4.2.5 (a) and (c) are obvious. It remains to check (b) and (c).

Lemma 4.2.6. A bounded W (κ)-linear derivation D : O ! OAq is a bounded W (κ)-

linear map which satisfies the Leibniz rule. If D|O(Td)
◦ = 0, then D = 0.

Proof. Equip both OAq and O = O(V )◦ with the p-adic norms. D is still continuous

because it is W (κ)-linear. Recall Lemma 2.3.6. The following is a bounded derivation

between two k-Banach spaces:

D[1/p] : O(V )! OAq[1/p].

By [31, section 3.6, page 64], it is identified with a bounded linear map

ΩO(V )/k ! OAq[1/p]. (4.2.3)

Loc. cit. identifies the composition of (4.2.3) and ΩO(Td)/k
∼= ΩO(V )/k with

D[1/p]|O(Td) = D|O(Td)
◦ [1/p] = 0.

Therefore (4.2.3) is the zero map and so is D[1/p]. D = 0 follows.

Lemma 4.2.7. The following diagram commutes:

HomAq (OAq, OAq)

Lr HomW (κ) (O,OAq) .

−◦ε̃jLr

P 7!ε̃◦σ(P )
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Proof of Lemma 4.2.7. Fix P ∈ Lr. Both jLr (P )◦ ε̃ and ε̃◦σ(P ) are bounded W (κ)-

linear derivations. Because of Lemma 4.2.6, it suffices to check

(ε̃ ◦ σ(P )) |O(Tk0)
◦ = jLr (P ) |O(Tk0)

◦ .

Fix the O-basis pr∂1, . . . , p
r∂d for Lr and write P =

∑d
i=1 fip

r∂i with fi ∈ O. Both

(ε̃ ◦ σ(−)) |O(Tk0)
◦ and jLr (−) |O(Tk0)

◦ are O-linear, thus it suffices to check

(ε̃ ◦ σ(pr∂l)) |O(Tk0)
◦ = jL (pr∂l) |O(Tk0)

◦

for every l = 1, . . . , d. Fix such an l. Now computing

(ε̃ ◦ σ(pr∂l)) (Tj) = jLt (pr∂l) (jO (Tj)) (4.2.4)

for every j = 1, . . . , d suffices. This is a direct computation:

(ε̃ ◦ σ(pr∂l)) (Tj) = ε̃

Å
pr

d

dTl
(Tj)

ã
= prδlj,

where δij denotes the Kronecker delta, and

jLr (pr∂l) (ε̃ (Tj)) = pr
d

dZl

Äî
T [j
ó

+ Zj
ä

= prδlj.

The last step uses that
[
T [j
]
∈ Aq is a constant and d/dZl is an Aq-linear derivation.

This gives the identity 4.2.4, and thus finishes the proof of Lemma 4.2.7.

We verify Condition 4.2.5(b) in the following.

Lemma 4.2.8. The morphism jLr is an O-Lie algebra homomorphism.

Proof. jLr is k◦-linear. It remains to show that it preserves the Lie bracket:

[jLr(P ), jLt(Q)] = jLr ([P,Q]) , (4.2.5)

for any P,Q ∈ Lr. For all j = 1, . . . , d, it suffices to check

[jLr(P ), jLr(Q)] (Zj) = jLr ([P,Q]) (Zj)

because both sides are derivations. But then we would have to compute

[jLr(P ), jLr(Q)] ◦ ε̃ = jLr ([P,Q]) ◦ ε̃. (4.2.6)
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Indeed, if (4.2.6) is true, we could compute

[jLr(P ), jLr(Q)] (Zj) = [jLr(P ), jLr(Q)]
Äî
T [j
ó

+ Zj
ä

= ([jLr(P ), jLr(Q)] ◦ ε̃) (Tj)

(4.2.6)
= (jLr ([P,Q]) ◦ ε̃) (Tj)

= jLr ([P,Q])
Äî
T [j
ó

+ Zj
ä

= jLr ([P,Q]) (Zj) .

In particular, (4.2.6) implies (4.2.5). The following computation

[jLr(P ), jLr(Q)] ◦ ε̃

= (jLr(P ) ◦ jLr(Q)− jLr(Q) ◦ jLr(P )) ◦ ε̃

= jLr(P ) ◦ (jLr(Q) ◦ ε̃)− jLr(Q) ◦ (jLr(P ) ◦ ε̃)
4.2.7
= (jLr(P ) ◦ ε̃) ◦ σ(Q)− (jLr(Q) ◦ ε̃) ◦ σ(P )

4.2.7
= (ε̃ ◦ σ(P )) ◦ σ(Q)− (ε̃ ◦ σ(Q)) ◦ σ(P )

4.2.7
= ε̃ ◦ (σ(P ) ◦ σ(Q)− σ(Q) ◦ σ(P ))

= ε̃ ◦ (σ(P ) ◦ σ(Q)− σ(Q) ◦ σ(P ))

= ε̃ ◦ [σ(P ), σ(Q)]

= ε̃ ◦ σ ([P,Q])
4.2.7
= jLr ([P,Q]) ◦ ε̃

checks (4.2.6).

We verify Condition 4.2.5(d) in the following.

Lemma 4.2.9. For all f ∈ O and P ∈ Lr, [jLr(P ), jO(f)] = jO (σ(P )(f)).

Proof. Write P =
∑d

l=1 flp
r∂l. Compute for every h ∈ OAq and l = 1, . . . , d,ï

jO (fl) p
r d

dZl
, jO(f)

ò
(h) = jO (fl)

ï
pr

d

dZl
, jO (f)

ò
(h)

= ε̃ (fl)

Å
pr

d

dZl
(ε̃ (f))

ã
h

=

Å
jO (fl) p

r d

dZl

ã
(ε̃ (f))h.

This establishes the identity at the left-hand side here:

[jLr(P ), jO(f)] (h) = (jLr(P ) ◦ ε̃) (f)h
4.2.7
= (ε̃ ◦ σ(P )) (f)h = jO (σ(P )(f))h.

The identity at the right-hand side comes from the definition of jO.
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We have thus verified Condition 4.2.5. This gives the morphism (4.2.2) and

thus the ¤�U (B ⊗A Lr)-Aq
dR(U)-bimodule structure on Aq

dR (U)
¨
Z1,...,Zd

pq

∂
. Invert p via

−“⊗W (κ)k0. Lemma A.0.7 applies because Condition 4.2.4 is satisfied, giving the de-

sired ÙD(V )-B†,+dR (U)-bimodule structure on OB†,+dR (U). It is functorial in both V and

U , giving OB†,+dR the structure of a ν−1 ÙD-B†,+dR -bimodule object.

We discussed above that uniqueness is immediate once we have checked that the

canonical morphism (4.2.1) is a morphism of sheaves of ν−1 ÙD-B†,+dR -bimodule objects.

Given V and U as above, we may check that

O(V )“⊗k0 B
†,+
dR (U)! OB†,+dR (U) (4.2.7)

is a morphism of ÙD(V )-B†,+dR (U)-bimodule objects. It is obtained by considering

B“⊗W (κ)Aq
dR (U)! Aq

dR (U)

≠
Z1, . . . , Zd

pq

∑
, (4.2.8)

inverting p, and sheafification. By Lemma B.1.5, it suffices to check that (4.2.8) is a

morphism of ¤�U (B ⊗A Lr)-Aq
dR (U)-bimodule objects.

It is Aq
dR(U)-linear, and the actions of ¤�U (B ⊗A Lr) on both the domain and

codomain of (4.2.8) are B-linear. Thus it remains to compare the actions of the

differentials pr∂1, . . . , p
r∂d. But we have étale coordinates on O(V ), and it suffices to

compare the actions on these. First, compute for all Tj ∈ O(V ),

pr∂l · Tj = prδlj.

Second, the map (4.2.8) sends Tj to
[
T [j
]

+ Zj. Cf. the proof of Lemma 4.2.7:

pr∂l ·
Äî
T [j
ó

+ Zj
ä

= prδlj.

Thus (4.2.8) is a morphism of ¤�U (B ⊗A Lr)-Aq
dR (U)-bimodules.

Corollary 4.2.10. There exists a ν−1 ÙD-B†dR-bimodule structure on OB†dR such that

the canonical morphism

ν−1O“⊗k0 B
†
dR ! OB

†
dR (4.2.9)

is a morphism of ν−1 ÙD-B†dR-bimodule objects. It is unique.

Proof of Corollary 4.2.10. The bimodule structure on OB†dR is obtained by taking

the bimodule structure on OB†,+dR as in Theorem 4.2.1 and inverting t, locally on the

pro-étale site. Regarding uniqueness, note that the canonical morphism (4.2.9) is

an epimorphism. This follows from Lemma 4.2.3 and because the completed tensor

product preserves epimorphisms. Thus Corollary A.0.4 applies.
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4.3 A Poincaré Lemma

X still denotes a smooth rigid-analytic k-variety. We construct a B†,+dR -linear connec-

tion on OB†,+dR , coming from its ν−1 ÙD-B†,+dR -bimodule structure.

Remark 4.3.1. Similarly, we may construct a B†dR-linear connection on OB†dR coming

from its ν−1 ÙD-B†dR-bimodule structure. The discussion here in Subsection 4.3 goes

through verbatim. This includes the formulation and proof of Theorem 4.3.8.

Definition 4.3.2. By [7, section 9.1, Proposition], there is a coherent sheaf T on X

with T (U) = DerkO(U) for every affinoid subdomain U ⊆ X: the tangent sheaf. Its

sections are k-Banach spaces. In particular, the restrictionf of T to the site Xw of

affinoid subdomains of X equipped with the weak Grothendieck topology is a sheaf of

Banach spaces by Lemma 2.6.1 and the open mapping theorem. Apply Lemma 2.6.2

to view it as a sheaf of k-ind-Banach spaces on Xw. In fact, it is by construction a

sheaf of O-ind-Banach modules.

Definition 4.3.3. We define the following map ∇†,+dR : OB†,+dR ! OB
†,+
dR
“⊗ν−1ν−1Ω1 of

sheaves of B†,+dR -ind-Banach modules. The ν−1 ÙD-B†,+dR -bimodule structure on OB†,+dR

from Theorem 4.2.1 gives a morphism

ν−1 ÙD ! HomB†,+dR

Ä
OB†,+dR ,OB

†,+
dR

ä
of sheaves of k0-ind-Banach algebras. The proof of loc. cit. actually implies that this

morphism is ν−1O-linear. Thus it lifts to a morphism

ν−1 ÙD“⊗ν−1OOB†,+dR ! HomB†,+dR

Ä
OB†,+dR ,OB

†,+
dR

ä
of sheaves of OB†,+dR -ind-Banach algebras; here, the left-hand side becomes a monoid

object through Lemma A.0.2. Compose it with the canonical map

ν−1T “⊗ν−1OOB†,+dR ! ν−1 ÙD“⊗ν−1OOB†,+dR .

to obtain

ν−1T “⊗ν−1OOB†,+dR ! HomB†,+dR

Ä
OB†,+dR ,OB

†,+
dR

ä
.

Its dual appears in the following composition:

OB†,+dR ! HomOB†,+dR

Ä
HomB†,+dR

Ä
OB†,+dR ,OB

†,+
dR

ä
,OB†,+dR

ä
! HomOB†,+dR

Ä
ν−1T “⊗ν−1OOB†,+dR ,OB

†,+
dR

ä
∼= Homν−1O

Ä
ν−1T ,OB†,+dR

ä
∼= OB†,+dR

“⊗ν−1Oν
−1Ω1.

This is ∇†,+dR .
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Remark 4.3.4. Definition 4.3.3 is inspired by the procedure that relates D-module

structures to connections in the classical theory.

Lemma 4.3.5. ∇†,+dR fits into the commutative diagram

OB†,+dR OB†,+dR
“⊗ν−1Oν

−1Ω

ν−1O ν−1O“⊗ν−1Oν
−1Ω

∇†,+dR

ν−1∇

of sheaves of k-ind-Banach spaces.

Proof. ν−1O ! OB†,+dR is ν−1 ÙD-linear by Theorem 4.2.1.

Lemma 4.3.6. Assume that X is affinoid and equipped with an étale morphism

X ! Td. The étale map X ! Td furnishes an isomorphism Ω1 ∼=
⊕d

i=1OdTi.
Together with Corollary 3.5.7, this gives the vertical morphisms in the diagrams

OB†,+dR (U)
⊕d

i=1OB
†,+
dR (U)dT

B†,+dR (U)“⊗k0k0

¨
Z1,...,Zd
p∞

∂
B†,+dR (U)“⊗k0Ω

k0

¨
Z1,...,Zd
p∞

∂
/k0

∇†,+dR (U)

id“⊗d∞∼= ∼= (4.3.1)

for every affinoid perfectoid U ∈ Xproét/‹X; d∞ denotes the colimit of the differentials

dq : k0

≠
Z1, . . . , Zd

pq

∑
! Ω

k0

¨
Z1,...,Zd

pq

∂
/k0

along q !∞. These diagrams 4.3.1 commute.

Proof. Firstly, we clarify the definition of the diagram (4.3.1):

• The codomain of ∇†,+dR (U) is indeed

d⊕
i=1

OB†,+dR (U)dT ∼= OB†,+dR (U)“⊗ν−1O(U)ν
−1Ω1(U) ∼=

Ä
OB†,+dR

“⊗ν−1Oν
−1Ω1

ä
(U).

• The vertical morphism at the left of (4.3.1) comes directly from Corollary 3.5.7

and Lemma 2.4.7.

• The vertical morphism at the right-hand side is the composition

B†,+dR (U)“⊗k0Ω
k0

¨
Z1,...,Zd
p∞

∂
/k0

∼=
d⊕
i=1

Å
B†,+dR (U)“⊗k0k0

≠
Z1, . . . , Zd

p∞

∑ã
∼= OB†,+dR (U),

where the morphism in the right comes again from Corollary 3.5.7 and Lemma 2.4.7.
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∇†,+dR (U) is, by the definition of ind-completions, the colimit of bounded maps

∇q,q′,+
dR (U) : Bq,+dR (U)

≠
Z1, . . . , Zd

pq

∑
!

d⊕
i=1

Bq
′,+

dR (U)

≠
Z1, . . . , Zd

pq′

∑
dTi

along pairs of natural numbers q ≤ q′. These ∇q,q′,+
dR (U) are connections in the

following sense: Firstly, they are, by definition, Bq,+dR (U)-linear. Secondly, they satisfy

the Leibniz rule because the sections of T satisfy the Leibniz rule. Lastly, they vanish

on Bq,+dR (U): By definition, ∇q,q′,+
dR sends a section b ∈ Bq,+dR (U) to the morphism

ν−1T ! Bq
′,+

dR

¨
Z1,...,Zd
pq′

∂
, P 7! bP (1) of sheaves of ν−1O-ind-Banach modules on a

localisation of Xproét. But this morphism is zero, again because the sections of T are

derivations, that is P (1) = 0.

Thus, to show the commutativity of the diagram (4.3.1), it remains to compute

∇q,q′,+
dR (U) (Zi) for all i = 1, . . . , d. This follows from Definition 4.3.3, using that

{dTi}i=1,...,d is the O(U)-basis of Ω1(U) dual to {∂i}i=1,...,d.

Lemma 4.3.7. For every i ≥ 0, there is a unique morphism

∇+,i
dR : OB+

dR
“⊗ν−1Oν

−1Ωi ! OB+
dR
“⊗ν−1Oν

−1Ωi+1

of sheaves of B+
dR-ind-Banach modules satisfying

∇+,i
dR (fdω1 ∧ · · · ∧ dωi) = ∇+

dR (f) ∧ dω1 ∧ · · · ∧ dωi

for local sections f ∈ OB+
dR and ω ∈ ν−1Ωi. In particular, ∇+,0

dR = ∇+
dR and ∇+,i+1

dR ◦
∇+,i

dR = 0 for all i ≥ 0.

Proof. Thanks to Lemma 4.3.6, we can proceed as in the classical situation, cf. for

example [59, Tag 0FKF].

Theorem 4.3.8 (Poincaré Lemma). Lemma 4.3.7 gives rise to the de Rham complex

0 −! OB+
dR

∇+
dR−! OB+

dR
“⊗ν−1Oν

−1Ω1 ∇
+,1
dR−! · · ·

∇+,d−1
dR−! OB+

dR
“⊗ν−1Oν

−1Ωd ! 0.

where d := dimX. It is strictly exact everywhere, except in degree zero: Here

B+
dR

∼=
−! ker∇+

dR

is an isomorphism of sheaves of B+
dR-ind-Banach algebras.

74

https://stacks.math.columbia.edu/tag/0FKF


Proof. We may assume that X is affinoid and equipped with an étale morphism

X ! Td, giving rise to the pro-étale covering ‹X ! X. We have to check that

0 −! B+
dR (U) −! OB+

dR (U) −! OB+
dR (U)“⊗ν−1O(U)ν

−1Ω1 (U)

−! . . . −! OB+
dR (U)“⊗ν−1O(U)ν

−1Ωd (U) −! 0 (4.3.2)

is strictly exact for every affinoid perfectoid U ∈ Xproét/‹X, cf. Lemma B.1.3(iii).

Corollary 3.5.7 and Lemma 4.3.6 imply that the complex (4.3.2) is isomorphic to

lim−!
q∈N

Bq,+dR (U)“⊗k0

Ä
0! k0 ! Aq ! Ω1

Aq/k0
! · · ·! Ωd

Aq/k0
! 0

ä
. (4.3.3)

where Aq := k0

¨
Z1,...,Zd

pq

∂
. The complexes at the right-hand side, that is

0! k0 ! Aq ! Ω1
Aq/k0

! · · ·! Ωd
Aq/k0

! 0, (4.3.4)

are by Lemma 4.3.6 the concatenations of the maps k0 ! Aq with the de Rham

complexes of the affinoid algebras Aq. (4.3.4) is not exact, but the colimit

lim−!
q∈N

Ä
0! k0 ! Aq ! Ω1

Aq/k0
! · · ·! Ωd

Aq/k0
! 0

ä
is strictly exact: this follows because the underlying complex of abstract k0-vector

spaces is exact by [15, remark following the proof of Corollary 1.3.3], thus the complex

of complete bornological spaces is strictly exact by a version of the open mapping

theorem, see [8, Theorem 4.9]. Apply Lemma 2.2.12 to see that the complex is

strictly exact as a complex of k-ind-Banach spaces. Since Bq,+dR (U)“⊗k0− is exact, cf.

Corollary 2.2.6. This implies that (4.3.3) is strictly exact as well.
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Chapter 5

Solution and de Rham functors

We use Schneiders’ framework for homological algebra within quasi-abelian categories,

cf. [52, section 1]. Fix the notation introduced in subsection 3.1. X is a smooth rigid-

analytic k-variety of dimension dimX.

5.1 Solution and de Rham functors for ÙD-modules

Equip OB†,+dR with the ν−1 ÙD-B†,+dR bimodule structure from Theorem 4.2.1.

Sol+ : D
ÄÙDäop

! D
Ä
B†,+dR

ä
,

M• 7! RHomν−1 ÙD Äν−1M•,OB†,+dR

ä
is the positive solution functor.

Remark 5.1.1. ν−1 is strongly exact by [18, the discussion following Lemma 2.26].

We refer to [18, subsection 5.2] for the definition of the duality functor

D : D
ÄÙDä! D

ÄÙDäop
.

Following the classical [35, Proposition 4.2.1], the positive de Rham functor is

dR+ : D
ÄÙDä! D

Ä
B†,+dR

ä
,M• 7! Sol+ (D (M•)) [dimX] . (5.1.1)

We compute some values of the solution and de Rham functors.

Definition 5.1.2. A sheaf of O-ind-Banach modules is locally finite free if it is,

locally, isomorphic to a finite direct sum of copies of O as a sheaf of O-ind-Banach

modules.
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Definition 5.1.3. Let N denote an O-module with integrable connection ∇N . This

induces a connection

∇ : ν−1N“⊗ν−1OOB†,+dR ! ν−1N“⊗ν−1OOB†,+dR
“⊗ν−1Oν

1Ω1

defined by the formula ∇ := (ν−1∇N )“⊗ id + id“⊗∇†,+dR . We writeÄ
ν−1N“⊗ν−1OOB†,+dR

ä∇=0
:= ker∇.

Proposition 5.1.4. LetM denote a ÙD-ind-Banach module which is locally finite free

as an O-module. Sol+ (M) is concentrated in degree 0 and

H0
(
Sol+ (M)

) ∼= Äν−1 D (M)“⊗ν−1OOB†,+dR

ä∇=0
.

We need the following result in order to prove Proposition 5.1.4.

Lemma 5.1.5. The functor −“⊗ν−1Oν
−1 ÙD is strongly exact.

Proof. We may work locally to assume that X is a smooth rigid analytic variety

equipped with an étale morphism X ! Td. Fix the notations lim −
b and “⊗b

, cf. the

end of section 2.2. In the following, the first isomorphism comes from [4, Lemma 3.4]

and the fourth isomorphism comes from [18, Corollary 3.40]; see also loc. cit. the

proof of Lemma 4.5. ÙD(X) ∼= lim −
r

O“⊗kk 〈pr∂1, . . . , p
r∂d〉

2.2.11∼= lim −
r

bO“⊗kk 〈pr∂1, . . . , p
r∂d〉

2.2.13∼= lim −
r

bO“⊗b

kk 〈pr∂1, . . . , p
r∂d〉

∼= O“⊗b

klim −
r

bk 〈pr∂1, . . . , p
r∂d〉

2.2.13∼= O“⊗klim −
r

bk 〈pr∂1, . . . , p
r∂d〉

2.2.11∼= O“⊗k lim −
r

k 〈pr∂1, . . . , p
r∂d〉 .

To show flatness, we work on the site Xfin
proét,affperfd, cf. Lemma 3.2.6. Lemma B.1.2

then computes the sections of the sheaf

M“⊗ν−1Oν
−1 ÙD ∼=M“⊗k lim −

r

k 〈pr∂1, . . . , p
r∂d〉

as follows: they are M(U)“⊗k lim −r k 〈p
r∂1, . . . , p

r∂d〉 over any affinoid perfectoid U .

The result thus follows from Lemma 2.2.14.
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Proof of Proposition 5.1.4. First, we recall [18, Proposition 5.2], which gives a func-

torial isomorphism

D (M) ∼= HomO (M,O) . (5.1.2)

Next, S• ! O denotes the Spencer resolution, cf. [18, Theorem 4.12]. Loc. cit.

introduces S• as a complex of sheaves of complete bornological k-vector spaces, and

it establishes the following stronger fact: the complexes

· · ·! S−2(U)! S−1(U)! S0(U)! O(U)! 0

are strictly exact for every affinoid subdomain U ⊆ X. Thus Lemma 2.2.12 applies,

showing that S• ! O is a strictly exact complex of sheaves of k-ind-Banach spaces.

We recall the definition: We have S−i = ÙD“⊗O ∧i T for all i ∈ N, and S−i = 0 for

all i < 0. Here, T denotes the tangent sheaf, cf. Definition 4.3.2. The Spencer reso-

lution is a locally free resolution of ÙD-ind-Banach modules. It is thus a resolution by

strongly flat O-ind-Banach modules, Since ν−1 is strongly exact, cf. [18, the discussion

following Lemma 2.26], ν−1S• ! ν−1O is a locally free solution of ν−1 ÙD-ind-Banach

modules. Lemma 5.1.5 implies that it is a resolution by strongly flat ν−1O-modules.

In the following, we freely use that M is finite locally free as an O-module.

Sol+ (M)

= RHomν−1 ÙD Äν−1M,OB†,+dR

ä
= RHomν−1 ÙD Äν−1M“⊗L

ν−1Oν
−1O,OB†,+dR

ä
∼= RHomν−1 ÙD Äν−1M“⊗ν−1Oν

−1S•,OB†,+dR

ä
B.1.6∼= RHomν−1 ÙD Äν−1M“⊗ν−1O

Ä
ν−1 ÙD“⊗ν−1Oν

−1∧• T
ä
,OB†,+dR

ä
∼= RHomν−1O

Ä
ν−1M“⊗ν−1Oν

−1∧• T ,OB†,+dR

ä
.

(5.1.3)

ν−1M“⊗ν−1Oν
−1∧• T is a complex of locally finite free ν−1O-modules. Thus it com-

putes the RHom. Now continue with the computation:

Sol+ (M)

(5.1.3)∼= Homν−1O

Ä
ν−1M“⊗ν−1Oν

−1∧• T ,OB†,+dR

ä
(5.1.2)∼= ν−1 D (M)“⊗ν−1O

Ä
OB†,+dR

“⊗ν−1Oν
−1Ω•

ä
.

(5.1.4)

D (M) is locally finite free as an O-module by (5.1.2). Therefore, ν−1 D (M) is

strongly flat as a ν−1O-ind-Banach module. It follows from (5.1.4) and Theorem 4.3.8
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that Sol+ (M) is concentrated in degree 0. More precisely,

H0
(
Sol+ (M)

)
(5.1.4)∼= H0

Ä
ν−1 D (M)“⊗ν−1O

Ä
OB†,+dR

“⊗ν−1Oν
−1Ω•

ää
=
Ä
ν−1 D (M)“⊗ν−1OOB†,+dR

ä∇=0
.

Corollary 5.1.6. Let M denote a ÙD-ind-Banach module which is locally finite free

as an O-module. Then dR+ (M) is concentrated in degree − dimX and

H− dimX
(
dR+ (M)

) ∼= Äν−1M“⊗ν−1OOB†,+dR

ä∇=0
.

Proof. D (M) is again locally finite free as an O-module, cf. [18, Proposition 5.2].

Thus Proposition 5.1.4 applies, showing that dR+ (M) is concentrated in degree

− dimX. Furthermore, we see with D2 (M) ∼=M, by [18, Theorem 7.17],

H− dimX
(
dR+ (M)

)
= H0

(
Sol+ (D (M))

)
∼=
Ä
ν−1 D2 (M)“⊗ν−1OOB†,+dR

ä∇=0

∼=
Ä
ν−1M“⊗ν−1OOB†,+dR

ä∇=0
.

Example 5.1.7. dR+ (O) is concentrated in degree − dimX, where its cohomology is

isomorphic to B†,+dR . This follows from Corollary 5.1.6 and a version of Theorem 4.3.8

for OB†,+dR . See also Remark 4.3.1.

5.2 Compatibility with Scholze’s functor I: period

sheaves

We would like to compare our constructions to [54, section 7]. Loc. cit. works with

the de Rham sheaves BdR, B+
dR, OB+

dR, andOBdR; we explain that they carry canonical

algebra structures from their overconvergent counterparts.

5.2.1 Relative period rings

We recall constructions from [54, section 6]. Consider the completion K of an alge-

braic extension of k which is perfectoid. Pick a ring of integral elements K+ ⊆ K

containing k◦ and fix an affinoid perfectoid (K,K+)-algebra (R,R+). Consider
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Fontaine’s map θinf : Ainf (R,R+) ! R+ and invert p to get ϑinf : Binf (R,R+) ! R.

The relative positive de Rham period ring is

B+
dR

(
R,R+

)
:= lim −

j∈N
Binf

(
R,R+

)
/ (kerϑinf)

j . (5.2.1)

If K admits a compatible sequence of primitive pth roots of unity ε ∈ K[,

BdR

(
R,R+

)
:= B+

dR

(
R,R+

)
[1/t] (5.2.2)

is the relative de Rham period ring. Here, t is as in Definition 3.3.26. We aim to

relate the period rings above to the overconvergent ones.

Notation 5.2.1. A(p)
inf (R,R+) is the seminormed W (κ)-algebra Ainf (R,R+), equipped

with the p-adic seminorm. It is a Banach algebra by Lemma 3.3.1.

Lemma 5.2.2. A(p)
inf (R,R+) / (ker θinf)

j is complete for every j ∈ N.

Proof. By Lemma 3.3.2, ker θinf = (ξ). Lemma 3.3.5(ii) implies

‖aξj‖ = ‖a‖ (5.2.3)

for all a ∈ A(p)
inf (R,R+). We show that the ideal (ξj) is closed. Consider a sequence

(fiξ
j)i∈N ⊆ (ξj) which converges to an element h. But then (fi) is Cauchy:

‖fi − fi+1‖
(5.2.3)

= ‖fiξj − fi+1ξ
j‖! 0 for i!∞,

and h = limi!∞ (fiξ
j) = (limi!∞ fi) ξ

j ∈ (ξj) follows.

Notation 5.2.3. B(p)
inf (R,R+) is the seminormed k0-algebra Binf (R,R+) with unit ball

Ainf (R,R+). It is a Banach algebra by Lemma 3.3.1.

Lemma 5.2.4. B(p)
inf (R,R+) / (kerϑinf)

j is complete for every j ∈ N.

Proof. By Lemma 2.3.6,

A(p)
inf

(
R,R+

)“⊗W (κ)k0

∼=
−!B(p)

inf

(
R,R+

)
.

By Lemma 2.3.7, which applies because A(p)
inf (R,R+) does not have p-torsion by

Lemma 3.3.1, the result would follow once

A(p)
inf

(
R,R+

) ξj

−! A(p)
inf

(
R,R+

)
(5.2.4)

is a strict monomorphism. It is injective by Lemma 3.3.2, has closed image by

Lemma 5.2.2 and is open onto its image because ‖aξ‖ = ‖a‖ for every a ∈ A(p)
inf (R,R+),

cf. Lemma 3.3.5(ii). (5.2.4) is thus a strict monomorphism by Lemma 2.1.7(iii).
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Ainf (R,R+) still carries the (p, ξ)-adic topology. Consider

Ainf

(
R,R+

)
! A(p)

inf

(
R,R+

)
/ (ker θinf)

j .

It map is a morphism ofW (κ)-Banach algebras by Lemma 2.1.3. It lifts to a morphism

Bq,+dR

(
R,R+

)
! B(p)

inf

(
R,R+

)
/ (kerϑinf)

j

of k0-Banach algebras for every q ∈ N. Now compute the inverse limit along j to get

|Bq,+dR

(
R,R+

)
|! BdR

(
R,R+

)
,

where | − | refers to the underlying abstract ring, cf. (2.2.1). Finally, we get the

following morphism of k0-algebras:

|B†,+dR

(
R,R+

)
| = lim−!

q∈N
|Bq,+dR

(
R,R+

)
|! B+

dR

(
R,R+

)
.

Similarly, BdR (R,R+) is canonically a |B†dR (R,R+) |-algebra via

|B†dR

(
R,R+

)
| = lim−!

t×
lim−!
q∈N
|Bq,+dR

(
R,R+

)
|! lim−!

t×
B+

dR

(
R,R+

) ∼= BdR

(
R,R+

)
.

5.2.2 Period sheaves

We refer the reader to [54, Definition 6.1] for the definition of the sheaf B+
dR on Xproét.

By loc. cit. Theorem 6.5(ii), its sections over an affinoid perfectoid affinoid perfectoid

U ∈ Xproét with Û = Spa (R,R+) are

B+
dR(U) = B+

dR

(
R,R+

)
.

Recall Definition 2.6.3. Lemma 2.6.4 and Theorem 3.4.2 give

|B†,+dR |(U) = |B†,+dR

(
R,R+

)
|.

From the discussion in subsection 5.2.1, we find a morphism of sheaves

|B†,+dR ||Xfin
proét,affperfd

! B+
dR |Xfin

proét,affperfd

of k0-algebras. Apply Lemma 3.2.6 to extend it to

|B†,+dR |! B+
dR,

which is a morphism of sheaves of k0-algebras on Xproét. Similarly, one finds

|B†dR |! BdR,

a canonical morphism of sheaves of k0-algebras on Xproét.
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5.2.3 Period structure sheaves

Notation 5.2.5. For any two W (κ)-algebras R and S, R“⊗(p)

W (κ)S is the p-adic comple-

tion of R⊗W (κ) S. We equip it with the p-adic seminorm.

Recall the following definition from [55].

Definition 5.2.6. OB+
dR is the sheafification of the presheaf

OB+,psh
dR : U = “ lim−!

i∈I
”Ui 7! lim−!

i≥i0
lim −
j∈N

(
O+(Ui)“⊗(p)

W (κ)Ainf(U)
)

[1/p]
/

(kerOϑinf)
j

of abstract k-algebras on Xproét. Here, Oϑinf denotes the map

Oθinf [1/p] :
(
O+(Ui)“⊗W (κ)Ainf(U)

)
[1/p]! “O+(U)[1/p] = “O(U).

Oθinf has been defined at the beginning of section 3.5.

In this subsection, we construct of a canonical morphism | OB†,+dR |! OB
+
dR.

Note that θinf : Binf ! “O extends canonically to a morphism θdR : B+
dR ! “O.

Notation 5.2.7. Let U be an affinoid perfectoid with Û = Spa (R,R+). ThenÄ
B+

dR(U)/
Ä
(kerϑdR)j

ää
JZ1, . . . , ZdK/ (Z1, . . . , Zd)

j

∼=
⊕
α∈Nd
|α|<j

Ä
B(p)

inf

(
R,R+

)
/
Ä
(kerϑinf)

j
ää
Zα

is viewed as a Banach space with the coproduct norm, cf. Lemma 5.2.4.

Lemma 5.2.8. Assume that X is affinoid and equipped with an étale morphism X !

Td. Let U ∈ Xproét be affinoid perfectoid. Fix a pro-étale presentation U = ” lim−!i∈I ”Ui

and fix i0 ∈ I as in Notation 3.5.4. Let i ≥ i0 be arbitrary. ThenÄ
B+

dR(U)/
Ä
(kerϑdR)j

ää
JZ1, . . . , ZdK/ (Z1, . . . , Zd)

j

∼=
−!

(
O+(Ui)“⊗(p)

W (κ)Ainf(U)
)

[1/p]
/

(kerOϑinf)
j

given by Zl 7! ul, cf. (3.5.1), are isomorphisms of seminormed k-vector spaces for

every j ∈ N. In particular, the right-hand sides are k-Banach spaces.

Proof. See the [54, proof of Proposition 6.10] for the construction of the inverse map.

One checks that it is bounded. Thus [54] implies that it is not merely an isomorphism

of abstract vector spaces, but an isomorphism of seminormed vector spaces.

82



We continue to assume that X is affinoid and equipped with an étale morphism

X ! Td. Let U = “ lim − ”i∈IUi ∈ Xproét be affinoid perfectoid. O+(Ui)“⊗W (κ)Ainf(U)

carries the (p, ξ)-adic topology. Consider

O+(Ui)“⊗W (κ)Ainf(U)!
(
O+(Ui)“⊗(p)

W (κ)Ainf(U)
)

[1/p]
/

(kerOθinf)
j , (5.2.5)

where the codomain carries the quotient seminorm. We find with Lemma 5.2.8 that

the morphism (5.2.8) lifts to a morphism

| OB+,†,psh
dR (U) |! OB+

dR (U) ,

after taking the colimit along i ∈ I. By the Remark 3.5.8, this gives

| OB+,†
dR (U) |! OB+

dR (U) .

Lemma 2.6.4 implies that we have constructed a morphism

| OB†,+dR ||Xfin
proét,affperfd

! OB+
dR |Xfin

proét,affperfd

of sheaves of abstract k-algebras. Apply Lemma 3.2.6 to get

| OB†,+dR |! OB
+
dR;

it is by construction a canonical morphism of sheaves of k-algebras. That is, OB+
dR

is canonically a sheaf of | OB†,+dR |-algebras. We observe that this algebra structure is

compatible with the ν−1O-module structure. In particular, the vertical morphism at

the right-hand side of the diagram (5.2.6) is well-defined.

Lemma 5.2.9. Recall the Definition 4.3.3 of ∇†,+dR . The B+
dR-linear connection ∇+

dR

has been defined in [54, section 6]; it fits into the commutative diagram

OB+
dR OB+

dR⊗ν−1Oν
−1Ω1

| OB†,+dR | | OB†,+dR
“⊗ν−1Oν

−1Ω1| = | OB†,+dR | ⊗ν−1|O| ν
−1|Ω1|.

∇+
dR

|∇†,+dR |

(5.2.6)

Proof. This is clear from Lemma 4.3.6 and the definition of ∇+
dR.

Finally, we recall that the sheaf OBdR is obtained from OB+
dR by inverting t, locally

on the pro-étale site, cf. [54, Definition 6.1(iv)]. The algebra structure | OB†,+dR | !
OB+

dR thus induces a canonical | OB†dR |-algebra structure on OBdR.

83



5.3 Compatibility with Scholze’s functor II: con-

jecture

Definition 5.3.1. [54, Definition 7.4] A filtered O-module with integrable connection

is a locally freeO-module E onX, together with a separated and exhaustive decreasing

filtration Filn E by locally direct summands, and an integrable connection∇ satisfying

Griffiths transversality with respect to the filtration, that is T · Filn E ⊆ Filn−1 E for

all n ∈ Z. Here, T denotes the tangent sheaf, cf. Definition 4.3.2.

See [54, Definition 6.8] for the definition of the descending filtration on OBdR;

its zeroth filtered piece is OB+
dR. Loc. cit. also constructs a BdR-linear connection

∇dR : OBdR ! OBdR⊗ν−1Oν
−1Ω1. Now Scholze’s functor [54, Theorem 7.6] isß

filtered O-modules
with integrable connection

™
!Mod

(
B+

dR

)
E 7! Fil0

(
ν−1E ⊗ν−1O OBdR

)∇=0
.

(5.3.1)

We would like to compare Scholze’s functor (5.3.1) to the positive de Rham func-

tor 5.1.1 First, we compare their domains.

Lemma 5.3.2. Consider an O-module E with integrable connection.

(i) Equipped with the trivial filtration, E is a filtered O-module with integrable con-

nection in the sense of Definition 5.3.1.

(ii) E is canonically a sheaf of ÙD-ind-Banach modules.

Proof. The trivial filtration is Filn E := E for n ≤ 0 and Filn E = 0 otherwise. (i)

is obvious. (ii) follows from [6, Theorem B]: loc. cit. allows to view E as a sheaf of

abstract ÙD-modules, it is thus canonically a sheaf of complete bornological ÙD-modules

by [18, Theorem 4.4]. One deduces from Lemma 2.2.12 that they are sheaves of k-ind-

Banach spaces, thus they are sheaves of ÙD-ind-Banach modules by Lemma 2.2.13.

Fix an O-module E with integrable connection. View it as a filtered O-module

with integrable connection via Lemma 5.3.2(i). Scholze’s functor (5.3.1) sends it to a

sheaf L of B+
dR-modules. Because E carries the trivial filtration,

L = Fil0
(
ν−1E ⊗ν−1O OBdR

)∇=0
=
(
ν−1E ⊗ν−1O OB+

dR

)∇=0
.

On the other hand, E is a complex of complete bornological ÙD-modules concentrated

in degree zero, cf. Lemma 5.3.2(ii). Compute

|H− dimX
(
dR+ (E)

)
| = |

Ä
ν−1E“⊗ν−1OOB†,+dR

ä∇=0
| =

Ä
ν−1E ⊗ν−1O | OB†,+dR |

ä∇=0
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with Corollary 5.1.6. Note that the tensor product at the right-hand side does not

have to be completed because ν−1E is a locally finite free sheaf of ν−1O-modules.

Now we find with Lemma 5.2.9 that there is a canonical morphism

|H− dimX
(
dR+ (E)

)
|! L

of sheaves of |B†,+dR |-modules. In particular, it factors through a morphism

|H− dimX
(
dR+ (E)

)
| ⊗|B†,+dR |

B+
dR

∼=
−! L (5.3.2)

of sheaves of B+
dR-modules.

Conjecture 5.3.3. This morphism (5.3.2) is an isomorphism for any O-module with

integrable connection E.
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Appendix A

Closed symmetric monoidal
categories

Consider a closed symmetric monoidal category (C, 1,⊗).

Lemma A.0.1. Let R ∈ C denote a monoid and M an R-module object. Fix an

epimorphism φ : M ! N . If there exists an R-module structure on N making φ

R-linear, then this structure is unique.

Proof. Consider two R-module structures on N with actions aN,1 : R ⊗ N ! N ,

respectively aN,2, and units 1N,1 : R ! N , respectively 1N,2. We assume that φ is

R-linear with respect to both R-module structures on N .

Denote the action of R on M by aM : R⊗M !M . The φ-linearities imply

aN,1 ◦ (idR⊗φ) = φ ◦ aM , and aN,2 ◦ (idR⊗φ) = φ ◦ aM .

But idR⊗φ is an epimorphism because C is closed; aN,1 = aN,2 follows.

Furthermore, the φ-linearities imply 1N,1 = φ ◦ 1M = 1N,2.

The following lemma is well-known, thus we omit the proof.

Lemma A.0.2. Let R, S denote two monoids in C Then R ⊗ S becomes a monoid

as follows. The multiplication is the composition

(R⊗ S)⊗ (R⊗ S) ∼= (R⊗R)⊗ (S ⊗ S)
µR⊗µS−! R⊗ S

and the unit is the composition

1 ∼= 1⊗ 1
1R“⊗1S−! R⊗ S.

Here µ∗ is the multiplication and 1∗ is the unit of ∗ ∈ {R, S}.
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Definition A.0.3. Let R and S denote two monoid objects in C. An R-S-bimodule

object M is an R⊗ Sop-module object. Here, the underlying C-objects of S and Sop

coincide, but the multiplication is performed in the reverse order.

A morphism between two R-S-bimodule objects is R-S-linear if it is a morphism

of R⊗ Sop-module objects.

The following corollary is a special case of Lemma A.0.1.

Corollary A.0.4. Let R, S ∈ C denote monoids. M is an R-S-bimodule object. Fix

an epimorphism φ : M ! N . If there exists an R-S-bimodule structure on N making

φ R-S-linear, then this structure is unique.

The following two lemma are easy to verify; we leave the details to the reader.

Lemma A.0.5. Suppose C admits all limits. Consider the tower of monoids

· · ·! R2 ! R1 ! R0;

here, the maps are multiplicative. Then R := lim −r∈NR becomes a monoid object:

R⊗R! lim −
r∈N

(Rr ⊗Rr)! lim −
r∈N

Rr = R

is the multiplication and the unit is

1 = lim −
r∈N

1! lim −
r∈N

Rr = R.

Lemma A.0.6. Suppose C admits all colimits. Consider the tower of monoids

S0 ! S1 ! S2 ! . . . ;

here, the maps are multiplicative. Then := lim−!q∈N S
q becomes a monoid object:

S ⊗ S = lim−!
q∈N

(Sq ⊗ Sq)! lim−!
q∈N

Sq = S

is the multiplication and the unit is

1 = lim−!
q∈N

1! lim−!
q∈N

Sq = S.

We utilise Lemma A.0.7 in the proofs of Theorem 4.2.1 and Corollary 4.2.10.
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Lemma A.0.7. Suppose C admits all limits and colimits and consider the towers

· · ·! R2 ! R1 ! R0, and

S0 ! S1 ! S2 ! . . .

of monoids; here, the maps are multiplicative. Let

M0 !M1 !M2 ! . . .

denote a tower of objects in C. We further have Rr-S
q-bimodule structures on M q

for all r ≤ q such that

(i) the following diagrams commute for all r′ ≥ r:

(Rr ⊗ Sq,op)⊗M q M q

(Rr′ ⊗ Sq,op)⊗M q M q.

Here, the horizontal maps denote the bimodule actions. Furthermore,

(ii) the following diagrams commute for all q′ ≥ q:

1 M q′

1 M q.

Here, the horizontal maps denote the unit maps.

Apply Lemma A.0.5 and A.0.6 to turn both R := lim −r∈NRr and S = lim−!q∈N S
q into

monoids. Then the composition

(R⊗ Sop)⊗M = lim−!
q∈N

(R⊗ Sq,op)⊗M q

! lim−!
q∈N

((
lim −
r≥q

Rr

)
⊗ Sq,op

)
⊗M q

! lim−!
q∈N

lim −
r≥q

(Rr ⊗ Sq,op)⊗M q

(i)
! lim−!

q∈N
M q

= M

defines an R-S-bimodule action on M := lim−!q∈NM
q. The unit 1! M is the colimit

of the units 1!M q; this is well-defined by (ii).
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Proof. We denote multiplication maps by µ and module actions by a. Consider

lim −r≥q

Ç
(Rr ⊗ Sq,op)⊗

(Rr ⊗ Sq,op)⊗M q

å
lim −r≥q ((Rr ⊗ Sq,op)⊗M q)

(R⊗ Sq,op)

⊗ (R⊗ Sq,op)⊗M q (R⊗ Sq,op)⊗M q

(R⊗ Sq,op)⊗M q M q

lim −r≥q ((Rr ⊗ Sq,op)⊗M q) M q

µ⊗id

id⊗a

a

a

(A.0.1)

for every q ∈ N. The diagram is commutative: this is obvious for all rectangles except

the middle one. However, the commutativity of the middle rectangle follows from the

commutativity of the others. Now consider again the square in the middle of (A.0.1)

and pass to the colimit along q !∞ to get the commutative diagram

(R⊗ Sq,op)⊗ (R⊗ Sq,op)⊗M q (R⊗ Sq,op)⊗M q

(R⊗ Sq,op)⊗M q M q

µ⊗id

id⊗ a

a

a

It remains to check that the R-S-bimodule action preserves the unit map. For every

q ∈ N, consider the diagram

lim −r≥q (Rr ⊗ Sq,op)

1⊗M q (M ⊗ Sq)⊗M q

M q.

(A.0.2)

The diagram is commutative: this is obvious for all triangles except the one in the

bottom left corner. However, the commutativity of the triangle follows from the

commutativity of the others. Now consider again the triangle in the bottom left

corner of (A.0.2) and pass to the colimit along q !∞ to get the diagram

1⊗M q (M ⊗ Sq)⊗M q

M q,

which is commutative. That is, the R-S-bimodule action preserves the unit map.
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Appendix B

Sheaves valued in quasi-abelian
categories

We assume the reader is familiar with quasi-abelian categories as developed by Schnei-

ders [52]. We primarily cite [18], which works with sheaves on G-topological spaces,

rather than topological spaces. This is still not the needed level of generality, but

the discussions loc. cit. generalise to our setting. We prove a folklore result in

subsection B.2 which we couldn’t find in the literature.

B.1 Categories of sheaves

Fix a site X and a quasi-abelian category E.

Definition B.1.1. An E-presheaf or presheaf with values in E is a functor

F : Xop ! E .

An E-sheaf or sheaf with values in E is an E-presheaf F such that for any open

U ∈ X and any covering U of U ,

• the products
∏

V ∈UF(V ) and
∏

W,W ′∈UF (W ×U W ′) exist, and

• 0! F(U)!
∏

V ∈UF(V )!
∏

W,W ′∈UF (W ×U W ′) is strictly exact.

Lemma B.1.2. Suppose that X admits only finite coverings and consider a strongly

left exact functor F : E1 ! E2 between two quasi-abelian categories which admit all

finite products. Then for any E1-sheaf F , F ◦F is a E2-sheaf.

Proof. This is because F commutes with finite products, cf. [52, Remark 1.1.13].
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From now on, E is elementary.

The morphisms in the category of presheaves Psh(X,E) are the natural trans-

formations. The category of sheaves Sh(X,E) is the corresponding full subcategory.

As in the classical theory, the inclusion Psh(X,E) ↪! Sh(X,E) has a left adjoint

F ! F sh. This is sheafification, cf. [18, the beginning of subsection 2.3].

Lemma B.1.3. The categories of presheaves and sheaves are well-behaved:

(i) Psh(X,E) and Sh(X,E) are quasi-abelian categories.

(ii) Psh(X,E) and Sh(X,E) are complete and cocomplete. Limits in Sh(X,E) are

the same as limits in Psh(X,E) and a colimit in Sh(X,E) is the sheafification

of the colimit in Psh(X,E).

(iii) Sheafification is strongly exact.

Now assume that E is closed symmetric monoidal with unit 1 ∈ E and tensor

product ⊗. This gives a symmetric monoidal structure on Sh(X,E) as follows. 1X is

the constant sheaf on X. Next, define for any two presheaves F and G a presheaf

F ⊗psh G : U 7! F(U)⊗ G(U).

If F and G are sheaves, F ⊗ G := (F ⊗psh G)sh. This gives a bifunctor

−⊗− : Sh(X,E)× Sh(X,E)! Sh(X,E).

Lemma B.1.4 ([18, Lemma 2.15]). (Sh(X,E), 1X ,⊗) is closed symmetric monoidal.

We use the following fact without further reference: A monoid structure on an

E-sheaf R is equivalent to the data of a monoid structure on the sections of R such

that the restriction maps R(U) ! R(V ) are multiplicative. Similarly, the structure

which makes an E-sheaf an R-module object is equivalent to section-wise module

structures which commute with the restriction maps in the obvious way.

Lemma B.1.5. (F ⊗psh G)sh ∼
−! F sh ⊗ Gsh is an isomorphism for any two E-

presheaves F and G on X. That is sheafification is strongly monoidal.

Proof. See [18, Lemma 2.16].
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We keep our assumptions on E fixed and consider a morphism f : X ! Y of sites,

which is given by a functor f−1 : Y ! X between the underlying categories.

fpsh,−1 : Psh (Y,E)! Psh (X,E)

fpsh,−1 (F) (U) := lim−!
U!f−1(V )

F(V )

is the presheaf inverse image. The direct image functor is

f∗ : Psh (X,E)! Psh (Y,E)

f∗ (F) (U) := F
(
f−1(U)

)
,

as discussed in [18, section 2.6]. f∗ sends sheaves to sheaves but fpsh,−1 does, in

general, not. This is why we define the direct image functor f−1 := ·sh ◦ fpsh,−1.

Lemma B.1.6. There is a natural isomorphism f−1 (F ⊗ G) ∼= f−1F⊗f−1G for any

two E-sheaves F and G on X. That is, f−1 is strongly monoidal.

Proof. See [18, Lemma 2.28].

Lemma B.1.7. Sheafification commutes with restriction.

Proof. This follows from the adjunctions, in particular f−1 a f∗.

Lemma B.1.7 implies the following.

Lemma B.1.8. For any two E-presheaves F and G on X, there is a functorial

isomorphism F|U ⊗ G|U ∼= (F ⊗ G) |U for any U ∈ X.

B.2 Sites with many quasi-compact open subsets

In this subsection, we fix again an elementary quasi-abelian category E and a site X.

Proposition B.2.1. Suppose that any U ∈ X is quasi-compact. Let F denote an

E-presheaf on X such that the sequence

0! F(U)!
∏
V ∈U

F(V )!
∏

W,W ′∈U

F(W ×U W ′)

is strictly exact for every finite covering U of any U ∈ X. Then F is a sheaf.

By [52, Corollary 1.2.28], Proposition B.2.1 follows from the following.

Lemma B.2.2. Proposition B.2.1 holds for any elementary abelian category E = A.
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Proof. Let U = {Ui ! U}i∈I denote a covering. Since U is quasicompact, we find a

finite subcovering Ũ = {Uĩ ! U}ĩ∈Ĩ where Ĩ ⊆ I. Consider the commutative diagram

0 F(U)
∏

i∈I F(Ui)
∏

i,j∈I F(Ui ×U Uj)

0 F(U)
∏

ĩ∈Ĩ F(Uĩ)
∏

ĩ,j̃∈Ĩ F(Uĩ ×U Uj̃)

α β

π
Ĩ π

Ĩ×Ĩ

α̃ β̃

(B.2.1)

where both πĨ and πĨ×Ĩ are the projections. It follows from the commutativity of

the left square that α is a monomorphism. It remains to show that the canonical

morphism Ψ: imα! ker β is an isomorphism. We introduce some notation.

• Let Φ̃ denote the inverse of Ψ̃ : im α̃! ker β̃.

• πi0 is the projection
∏

i∈I F(Ui)! F(Ui0) and αi0 := πi0 ◦ α for every i0 ∈ I.

• α′−1 : imα ! F(U) is the inverse of the morphism α′ : F(U) ! imα induced

by α. It is an isomorphism because α is a monomorphism and A is abelian.

Similarly, α̃′−1 : im α̃! F(U) denotes the inverse of the morphism α̃′ : F(U)!

im α̃ induced by α̃.

• πĨ restricts to maps πimα
Ĩ

: imα! im α̃ and πkerβ

Ĩ
: ker β ! ker β̃.

• Write πimα
i0

for the composition imα ↪!
∏

i∈I F(Ui)
πi0−! F(Ui0) and πkerβ

i0
for

the composition ker β ↪!
∏

i∈I F(Ui)
πi0−! F(Ui0).

Lemma B.2.3. We have identities

πimα
i0

= αi0 ◦ α̃′−1 ◦ πimα
Ĩ

, and

πkerβ
i0

= αi0 ◦ α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ

for every i0 ∈ I.

Proof. Compose α̃′ = πimα
Ĩ
◦ α′ with α̃′−1 on the left and α′−1 on the right to get

α′−1 = α̃′−1 ◦ πimα
Ĩ

.

Now we compose with α′ on the left and again with πimα
i0

on the left. This yields

πimα
i0

= πimα
i0
◦
(
α′ ◦ α̃′−1 ◦ πimα

Ĩ

)
=
(
πimα
i0
◦ α′

)
◦ α̃′−1 ◦ πimα

Ĩ

= αi0 ◦ α̃′−1 ◦ πimα
Ĩ
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which is the first identity stated above in Lemma B.2.3.

To prove the second identity, we may assume without loss of generality that A is

small; otherwise we pass to a suitable subcategory. The Freyd-Mitchell Embedding

Theorem [60, Theorem 1.6.1] gives that A is the category of modules over some ring.

Let (si)i∈I ∈ ker β. Then
Ä
Φ̃ ◦ πkerβ

Ĩ

ä (
(si)i∈I

)
= (sĩ)̃i∈Ĩ lies in the kernel of β̃, thus

it lies in the image of α̃. That is, there exists an s ∈ F(U) such that α̃(s) = (sĩ)̃i∈Ĩ .

With other words, s =
Ä
α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ

ä (
(si)i∈I

)
. We have to show that αi0(s) = si0

for all i0 ∈ I, since πkerβ
i0

(
(si)i∈I

)
= si0 .

Because Ũ = {Uĩ ! U}ĩ∈Ĩ is a finite covering of U , {Uĩ×U Ui0 ! Ui0}ĩ∈Ĩ is a finite

covering of Ui0 . Thus the sequence

0 F(Ui0)
∏

ĩ∈Ĩ F(Uĩ ×U Ui0)
∏

ĩ,j̃∈Ĩ F((Uĩ ×U Ui0)×Ui0 (Uj̃ ×U Ui0))

is exact. That is, the element si0 is uniquely determined by its restrictions to the

open sets Uĩ ×U Ui0 . Therefore, the computation

si0|Uĩ×UUi0 = sĩ|Uĩ×UUi0 =
(
s|Uĩ
)
|Uĩ×UUi0 = s|Uĩ×UUi0

implies αi0(s) = s|Ui0 = si0 . Note that the first equality si0|Uĩ×UUi0 = sĩ|Uĩ×UUi0
follows from (si)i∈I ∈ ker β. This finishes the proof.

We claim that

Φ = α′ ◦ α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ

is a two-sided inverse of Ψ. First, we will show that it is a right-inverse. Since ker β

is a subobject of
∏

i∈I F(U), it suffices to show the commutativity of the diagrams

ker β ker β

F(Ui0)

Ψ◦Φ

πker β
i0

πker β
i0

for every i0 ∈ I. Now compute

πkerβ
i0
◦Ψ ◦ α′ = πimα

i0
◦ α′ = αi0 (B.2.2)

and therefore

πkerβ
i0
◦ (Ψ ◦ Φ) = πkerβ

i0
◦Ψ ◦ α′ ◦ α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ

(B.2.2)
= αi0 ◦ α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ

B.2.3
= πkerβ

i0
.
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We find that Φ is a right-inverse of Ψ. It remains to compute that the diagrams

imα imα

F(Ui0)

Φ◦Ψ

πimα
i0

πimα
i0

are commutative for every i0 ∈ I. We have πkerβ

Ĩ
◦Ψ = Ψ̃ ◦ πimα

Ĩ
, so that composing

with Φ̃ on the left yields

Φ̃ ◦ πkerβ

Ĩ
◦Ψ = πimα

Ĩ
. (B.2.3)

We get

πimα
i0
◦ (Φ ◦Ψ) = πimα

i0
◦ α′ ◦ α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ
◦Ψ

= αi0 ◦ α̃′−1 ◦ Φ̃ ◦ πkerβ

Ĩ
◦Ψ

(B.2.3)
= αi0 ◦ α̃′−1 ◦ πimα

I

B.2.3
= πimα

i0
.

That is, Φ is a left-inverse of Ψ as well. We have thus shown that the top row of the

diagram (B.2.1) is exact. Since this choice of covering was arbitrary, F is a sheaf.
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Appendix C

Completeness of rings of formal
power series

We prove the following result.

Proposition C.0.1. Fix a regular sequence s1, . . . , sn in a commutative ring S. We

consider the ideal I := (s1, . . . , sn) and pick an arbitrary d ∈ N≥1. If S is I-adically

complete, then SJX1, . . . , XdK is (X1, . . . , Xd, s1, . . . , sn)-adically complete.

Lemma C.0.2. Let S denote a commutative ring, fix a regular sequence s1, . . . , sn ∈
S, and consider the ideal I := (s1, . . . , sn). The following are equivalent.

(i) S is I-adically complete.

(ii) S is, for every i = 1, . . . , n, si-adically complete.

Proof. The direction (i) ⇒ (ii) is proven in [59, Tag 090T]. Now suppose (ii). [59,

Tag 091T] implies that S is, for every i = 1, . . . , n, derived si-adically complete. It

is derived I-adically complete by [59, Tag 091Q]. Now use the notation from [59,

Tag 0BKC], that is consider the Koszul complexes K•j = K•
Ä
S; sj1, . . . , s

j
n

ä
for every

j ∈ N≥1. Since s1, . . . , sn is a regular sequence, the sequences sj1, . . . , s
j
n are regular.

[59, Tag 062F] gives that K•j is quasi-isomorphic to S/
Ä
sj1, . . . , s

j
n

ä
, viewed as a

complex concentrated in degree zero. [59, Tag 091Z] implies that the canonical

S
∼=
−! R lim

(
S ⊗L

S K
•
j

) ∼= R limS/
Ä
sj1, . . . , s

j
n

ä
is an isomorphism. Here, the operator lim denotes the homotopy limit along the

maps · · · ! K•2 ! K•1 , see the discussion in [59, Tag 0BKC]. We apply [59, Tag

0941] 1 to see that the right-hand side coincides with R lim −t∈N S/
Ä
sj1, . . . , s

j
n

ä
, where

1In the notation of [59, Tag 0941], we choose C to be the site associated to the topological space
with one point.
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R lim −j∈N denotes the derived functor of the inverse limit. In particular, taking zeroth

cohomology, S ∼= lim −j∈N S/
Ä
sj1, . . . , s

j
n

ä
. It suffices to show that the canonical mor-

phism lim −j∈N S/
Ä
sj1, . . . , s

j
n

ä
! lim −j∈N S/I

j is an isomorphism. But for every j ≥ n,

Ij ⊆
(
sl1, . . . , s

l
n

)
for l = bj/nc, proving the claim.

Lemma C.0.3. Let S denote a commutative ring containing an element s ∈ S such

that it is s-adically complete. Then SJX1, . . . , XdK is s-adically complete as well.

Proof. We have to show that the following morphism is an isomorphism:

ϕ : SJX1, . . . , XdK! lim −
j

SJX1, . . . , XdK/sj.

Let f ∈ kerϕ. That is for every j exists an fj ∈ SJX1, . . . , XdK such that f = sjfj.

Writing f =
∑

α∈Nd fαX
α and fj =

∑
α∈Nd fjαX

α for all j, this means that fα = sjfjα

for all α and for all j. Since S is s-adically separated this implies fα = 0 for all α.

This shows f = 0. To prove surjectivity, pick fj ∈ SJX1, . . . , XdK for all j such that(
fj
)
j
∈ lim −

j

SJX1, . . . , XdK/sj,

where fj denotes the image of fj modulo sj. This means that fl − fj ∈ (sj) for every

l ≥ j. Writing fj =
∑

α∈Nd fjαX
α for all j, this implies that flα− ftα ∈ (sj) for every

l ≥ j. Therefore (
fjα
)
∈ lim −

j

S/sj.

Because S is s-adically complete, we conclude that there exists an fα ∈ S for every

α such that fα ≡ fjα mod sj. Set f =
∑

α∈Nd fαX
α. We claim that ϕ(f) =

(
fj
)
j
.

Indeed, we have

f − fj =
∑
α∈Nd

(fα − fjα)Xα ≡ 0 mod sj

for every j. This proves Lemma C.0.3.

Proof of Proposition C.0.1. SJX1, . . . , XdK ∼= SJX1, . . . , Xi−1, Xi+1, . . . XdKJXiK isXi-

adically complete for every i = 1, . . . , d. By Lemma C.0.2, S is si-adically com-

plete for every i = 1, . . . , n, therefore SJX1, . . . , XdK is si-adically complete for every

i = 1, . . . , n, see Lemma C.0.3. But the sequence X1, . . . , Xd, s1, . . . , sn is regular,

thus we can apply Lemma C.0.2 to finish the proof of Proposition C.0.1.
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tions. Astérisque, 371:1–239, 2015.

[42] Mark Kisin. Local constancy in p-adic families of galois representations. Math-

ematische Zeitschrift, 230(3):569–593, 1999.

[43] Z. M. Why is Fontaine’s infinitesimal period ring Ainf complete? MathOverflow.

Author profile: https://mathoverflow.net/users/176381/z-m. URL: https:

//mathoverflow.net/q/437338 (version: 2022-12-27).

[44] Ralf Meyer. Local and Analytic Cyclic Homology, volume 3 of EMS Tracts in

Mathematics. European Mathematical Society, 2007.

[45] Fabienne Prosmans and Jean-Pierre Schneiders. A topological reconstruction

theorem for D∞-modules. Duke Mathematical Journal, 102(1):39 – 86, 2000.

[46] Fabienne Prosmans and Jean-Pierre Schneiders. A homological study of
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